These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 15631981)
21. Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Xiao CW; Yuste JC; Janssens IA; Roskams P; Nachtergale L; Carrara A; Sanchez BY; Ceulemans R Tree Physiol; 2003 Jun; 23(8):505-16. PubMed ID: 12730042 [TBL] [Abstract][Full Text] [Related]
22. Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedlings to elevated carbon dioxide concentrations. Juurola E Tree Physiol; 2003 Feb; 23(2):85-95. PubMed ID: 12533303 [TBL] [Abstract][Full Text] [Related]
23. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
24. Canopy position affects photosynthetic adjustments to long-term elevated CO2 concentration (FACE) in aging needles in a mature Pinus taeda forest. Crous KY; Ellsworth DS Tree Physiol; 2004 Sep; 24(9):961-70. PubMed ID: 15234893 [TBL] [Abstract][Full Text] [Related]
25. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Domisch T; Finér L; Lehto T Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047 [TBL] [Abstract][Full Text] [Related]
26. The effect of elevated CO Heyworth CJ; Iason GR; Temperton V; Jarvis PG; Duncan AJ Oecologia; 1998 Jul; 115(3):344-350. PubMed ID: 28308425 [TBL] [Abstract][Full Text] [Related]
27. Delayed soil thawing affects root and shoot functioning and growth in Scots pine. Repo T; Lehto T; Finér L Tree Physiol; 2008 Oct; 28(10):1583-91. PubMed ID: 18708340 [TBL] [Abstract][Full Text] [Related]
28. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092 [TBL] [Abstract][Full Text] [Related]
29. Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period. Zha T; Ryyppö A; Wang KY; Kellomäki S Tree Physiol; 2001 Nov; 21(17):1279-87. PubMed ID: 11696415 [TBL] [Abstract][Full Text] [Related]
30. Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature. Zha T; Wang KY; Ryyppö A; Kellomäki S Tree Physiol; 2002 Dec; 22(17):1241-8. PubMed ID: 12464577 [TBL] [Abstract][Full Text] [Related]
31. Influence of tree internal nitrogen reserves on the response of beech (Fagus sylvatica) trees to elevated atmospheric carbon dioxide concentration. Dyckmans J; Flessa H Tree Physiol; 2002 Jan; 22(1):41-9. PubMed ID: 11772554 [TBL] [Abstract][Full Text] [Related]
32. Effects of prolonged drought stress on Scots pine seedling carbon allocation. Aaltonen H; Lindén A; Heinonsalo J; Biasi C; Pumpanen J Tree Physiol; 2017 Apr; 37(4):418-427. PubMed ID: 27974653 [TBL] [Abstract][Full Text] [Related]
33. Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Volin JC; Kruger EL; Lindroth RL Tree Physiol; 2002 May; 22(7):435-48. PubMed ID: 11986047 [TBL] [Abstract][Full Text] [Related]
34. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Riikonen J; Lindsberg MM; Holopainen T; Oksanen E; Lappi J; Peltonen P; Vapaavuori E Tree Physiol; 2004 Nov; 24(11):1227-37. PubMed ID: 15339732 [TBL] [Abstract][Full Text] [Related]
35. Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations. Overdieck D; Ziche D; Böttcher-Jungclaus K Tree Physiol; 2007 Feb; 27(2):261-8. PubMed ID: 17241968 [TBL] [Abstract][Full Text] [Related]
36. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. Zadworny M; McCormack ML; Mucha J; Reich PB; Oleksyn J New Phytol; 2016 Oct; 212(2):389-99. PubMed ID: 27301778 [TBL] [Abstract][Full Text] [Related]
37. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Bansal S; Hallsby G; Löfvenius MO; Nilsson MC Tree Physiol; 2013 May; 33(5):451-63. PubMed ID: 23525156 [TBL] [Abstract][Full Text] [Related]
38. Forest carbon balance under elevated CO Hamilton JG; DeLucia EH; George K; Naidu SL; Finzi AC; Schlesinger WH Oecologia; 2002 Apr; 131(2):250-260. PubMed ID: 28547693 [TBL] [Abstract][Full Text] [Related]
39. Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Sallas L; Luomala EM; Ultriainen J; Kainulainen P; Holopainen JK Tree Physiol; 2003 Feb; 23(2):97-108. PubMed ID: 12533304 [TBL] [Abstract][Full Text] [Related]
40. [Responses of agricultural crops of free-air CO2 enrichment]. Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]