BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 15631982)

  • 1. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A; Peters GD; McIntyre LR; Harrington MG
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM; Baker S; Sala A
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forest restoration treatments in a ponderosa pine forest enhance physiological activity and growth under climatic stress.
    Tepley AJ; Hood SM; Keyes CR; Sala A
    Ecol Appl; 2020 Dec; 30(8):e02188. PubMed ID: 32492227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine.
    Irvine J; Law BE; Kurpius MR; Anthoni PM; Moore D; Schwarz PA
    Tree Physiol; 2004 Jul; 24(7):753-63. PubMed ID: 15123447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest.
    DeLuca TH; Sala A
    Ecology; 2006 Oct; 87(10):2511-22. PubMed ID: 17089660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water use by whitebark pine and subalpine fir: potential consequences of fire exclusion in the northern Rocky Mountains.
    Sala A; Carey EV; Keane RE; Callaway RM
    Tree Physiol; 2001 Jul; 21(11):717-25. PubMed ID: 11470657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies.
    Naficy C; Sala A; Keeling EG; Graham J; DeLuca TH
    Ecol Appl; 2010 Oct; 20(7):1851-64. PubMed ID: 21049874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term efficacy of fuel reduction and restoration treatments in Northern Rockies dry forests.
    Hood SM; Crotteau JS; Cleveland CC
    Ecol Appl; 2024 Mar; 34(2):e2940. PubMed ID: 38212051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed conifer mortality after fuel reduction treatments: interactive effects of fuel, fire intensity, and bark beetles.
    Youngblood A; Grace JB; McIver JD
    Ecol Appl; 2009 Mar; 19(2):321-37. PubMed ID: 19323193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA.
    Restaino C; Young DJN; Estes B; Gross S; Wuenschel A; Meyer M; Safford H
    Ecol Appl; 2019 Jun; 29(4):e01902. PubMed ID: 31020735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.
    Odion DC; Hanson CT; Arsenault A; Baker WL; Dellasala DA; Hutto RL; Klenner W; Moritz MA; Sherriff RL; Veblen TT; Williams MA
    PLoS One; 2014; 9(2):e87852. PubMed ID: 24498383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the multi-scale response of avifauna to prescribed fire experiments in the southwest United States.
    Dickson BG; Noon BR; Flather CH; Jentsch S; Block WM
    Ecol Appl; 2009 Apr; 19(3):608-21. PubMed ID: 19425425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests.
    Misson L; Panek JA; Goldstein AH
    Tree Physiol; 2004 May; 24(5):529-41. PubMed ID: 14996657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.
    Panek JA
    Tree Physiol; 2004 Mar; 24(3):277-90. PubMed ID: 14704137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.
    Lerch AP; Pfammatter JA; Bentz BJ; Raffa KF
    PLoS One; 2016; 11(10):e0164738. PubMed ID: 27783632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water limitations to carbon exchange in old-growth and young ponderosa pine stands.
    Irvine J; Law BE; Anthoni PM; Meinzer FC
    Tree Physiol; 2002 Feb; 22(2-3):189-96. PubMed ID: 11830415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.
    Dore S; Kolb TE; Montes-Helu M; Eckert SE; Sullivan BW; Hungate BA; Kaye JP; Hart SC; Koch GW; Finkral A
    Ecol Appl; 2010 Apr; 20(3):663-83. PubMed ID: 20437955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes.
    McDowell NG; Adams HD; Bailey JD; Hess M; Kolb TE
    Ecol Appl; 2006 Jun; 16(3):1164-82. PubMed ID: 16827010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.