BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15632156)

  • 1. Folding regulates autoprocessing of HIV-1 protease precursor.
    Chatterjee A; Mridula P; Mishra RK; Mittal R; Hosur RV
    J Biol Chem; 2005 Mar; 280(12):11369-78. PubMed ID: 15632156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
    Ishima R; Torchia DA; Louis JM
    J Biol Chem; 2007 Jun; 282(23):17190-9. PubMed ID: 17412697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease.
    Agniswamy J; Sayer JM; Weber IT; Louis JM
    Biochemistry; 2012 Feb; 51(5):1041-50. PubMed ID: 22242794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-dependent autoprocessing of human immunodeficiency virus type 1 protease precursors.
    Tien C; Huang L; Watanabe SM; Speidel JT; Carter CA; Chen C
    PLoS One; 2018; 13(1):e0191372. PubMed ID: 29338056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Functional Interplay between Human Immunodeficiency Virus Type 1 Protease Residues 77 and 93 Involved in Differential Regulation of Precursor Autoprocessing and Mature Protease Activity.
    Counts CJ; Ho PS; Donlin MJ; Tavis JE; Chen C
    PLoS One; 2015; 10(4):e0123561. PubMed ID: 25893662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolytic processing of HIV-1 protease precursor, kinetics and mechanism.
    Louis JM; Wondrak EM; Kimmel AR; Wingfield PT; Nashed NT
    J Biol Chem; 1999 Aug; 274(33):23437-42. PubMed ID: 10438521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of dissociative inhibition of HIV protease and its autoprocessing from a precursor.
    Sayer JM; Aniana A; Louis JM
    J Mol Biol; 2012 Sep; 422(2):230-44. PubMed ID: 22659320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations Proximal to Sites of Autoproteolysis and the α-Helix That Co-evolve under Drug Pressure Modulate the Autoprocessing and Vitality of HIV-1 Protease.
    Louis JM; Deshmukh L; Sayer JM; Aniana A; Clore GM
    Biochemistry; 2015 Sep; 54(35):5414-24. PubMed ID: 26266692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transient precursor of the HIV-1 protease. Isolation, characterization, and kinetics of maturation.
    Wondrak EM; Nashed NT; Haber MT; Jerina DM; Louis JM
    J Biol Chem; 1996 Feb; 271(8):4477-81. PubMed ID: 8626801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of human immunodeficiency virus type 1 protease autoprocessing by charge properties of surface residue 69.
    Huang L; Sayer JM; Swinford M; Louis JM; Chen C
    J Virol; 2009 Aug; 83(15):7789-93. PubMed ID: 19457992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir.
    Hayashi H; Takamune N; Nirasawa T; Aoki M; Morishita Y; Das D; Koh Y; Ghosh AK; Misumi S; Mitsuya H
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12234-9. PubMed ID: 25092296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the effect of potato carboxypeptidase inhibitor pro-sequence on the folding of the mature protein.
    Bronsoms S; Villanueva J; Canals F; Querol E; Aviles FX
    Eur J Biochem; 2003 Sep; 270(17):3641-50. PubMed ID: 12919329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The L76V drug resistance mutation decreases the dimer stability and rate of autoprocessing of HIV-1 protease by reducing internal hydrophobic contacts.
    Louis JM; Zhang Y; Sayer JM; Wang YF; Harrison RW; Weber IT
    Biochemistry; 2011 May; 50(21):4786-95. PubMed ID: 21446746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of flanking sequences on the dimer stability of human immunodeficiency virus type 1 protease.
    Wondrak EM; Louis JM
    Biochemistry; 1996 Oct; 35(39):12957-62. PubMed ID: 8841142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
    Tang C; Louis JM; Aniana A; Suh JY; Clore GM
    Nature; 2008 Oct; 455(7213):693-6. PubMed ID: 18833280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The maturation of HIV-1 protease precursor studied by discrete molecular dynamics.
    Kimura S; Caldarini M; Broglia RA; Dokholyan NV; Tiana G
    Proteins; 2014 Apr; 82(4):633-9. PubMed ID: 24123234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding pathway mediated by an intramolecular chaperone: dissecting conformational changes coincident with autoprocessing and the role of Ca(2+) in subtilisin maturation.
    Yabuta Y; Subbian E; Takagi H; Shinde U; Inouye M
    J Biochem; 2002 Jan; 131(1):31-7. PubMed ID: 11754732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.