These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15632424)

  • 1. Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases.
    Junghanns C; Moeder M; Krauss G; Martin C; Schlosser D
    Microbiology (Reading); 2005 Jan; 151(Pt 1):45-57. PubMed ID: 15632424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the influence of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of the xenoestrogen technical nonylphenol by the aquatic hyphomycete Clavariopsis aquatica.
    Martin C; Corvini PF; Vinken R; Junghanns C; Krauss G; Schlosser D
    Appl Environ Microbiol; 2009 Jul; 75(13):4398-409. PubMed ID: 19429559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular laccase activity and transcript levels of putative laccase genes during removal of the xenoestrogen technical nonylphenol by the aquatic hyphomycete Clavariopsis aquatica.
    Solé M; Kellner H; Brock S; Buscot F; Schlosser D
    FEMS Microbiol Lett; 2008 Nov; 288(1):47-54. PubMed ID: 18764877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and physicochemical processes contributing to the removal of endocrine-disrupting chemicals and pharmaceuticals by the aquatic ascomycete Phoma sp. UHH 5-1-03.
    Hofmann U; Schlosser D
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2381-99. PubMed ID: 26536880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation by organic compounds and heavy metals of multiple laccase genes in the aquatic hyphomycete Clavariopsis aquatica.
    Solé M; Müller I; Pecyna MJ; Fetzer I; Harms H; Schlosser D
    Appl Environ Microbiol; 2012 Jul; 78(13):4732-9. PubMed ID: 22544244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments.
    Martin C; Moeder M; Daniel X; Krauss G; Schlosser D
    Environ Sci Technol; 2007 Aug; 41(15):5395-402. PubMed ID: 17822108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of 4-n-nonylphenol under nitrate reducing conditions.
    De Weert JP; Viñas M; Grotenhuis T; Rijnaarts HH; Langenhoff AA
    Biodegradation; 2011 Feb; 22(1):175-87. PubMed ID: 20640878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laccase production by the aquatic ascomycete Phoma sp. UHH 5-1-03 and the white rot basidiomycete Pleurotus ostreatus DSM 1833 during submerged cultivation on banana peels and enzyme applicability for the removal of endocrine-disrupting chemicals.
    Libardi N; Gern RM; Furlan SA; Schlosser D
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1144-56. PubMed ID: 22371062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial degradation of nonylphenol and other alkylphenols--our evolving view.
    Corvini PF; Schäffer A; Schlosser D
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):223-43. PubMed ID: 16826376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different pathways for 4-n-nonylphenol biodegradation by two Aspergillus strains derived from estuary sediment: Evidence from metabolites determination and key-gene identification.
    Yang Z; Shi Y; Zhang Y; Cheng Q; Li X; Zhao C; Zhang D
    J Hazard Mater; 2018 Oct; 359():203-212. PubMed ID: 30036750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial degradation of a single branched isomer of nonylphenol by Sphingomonas TTNP3.
    Corvini PF; Vinken R; Hommes G; Mundt M; Hollender J; Meesters R; Schröder HF; Schmidt B
    Water Sci Technol; 2004; 50(5):189-94. PubMed ID: 15497847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes.
    Tsutsumi Y; Haneda T; Nishida T
    Chemosphere; 2001 Jan; 42(3):271-6. PubMed ID: 11100927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-biodegradability relationship of nonylphenol isomers during biological wastewater treatment process.
    Hao R; Li J; Zhou Y; Cheng S; Zhang Y
    Chemosphere; 2009 May; 75(8):987-94. PubMed ID: 19251303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and biochemical characterization of a laccase from the aquatic fungus Myrioconium sp. UHH 1-13-18-4 and molecular analysis of the laccase-encoding gene.
    Martin C; Pecyna M; Kellner H; Jehmlich N; Junghanns C; Benndorf D; von Bergen M; Schlosser D
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):613-24. PubMed ID: 17955194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular docking simulation on the interactions of laccase from Trametes versicolor with nonylphenol and octylphenol isomers.
    Mo D; Zeng G; Yuan X; Chen M; Hu L; Li H; Wang H; Xu P; Lai C; Wan J; Zhang C; Cheng M
    Bioprocess Biosyst Eng; 2018 Mar; 41(3):331-343. PubMed ID: 29185034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship.
    Lu Z; Gan J
    Environ Sci Technol; 2014 Jan; 48(2):1008-14. PubMed ID: 24345275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of nonylphenol isomers in a technical mixture and in water by comprehensive two-dimensional gas chromatography-mass spectrometry.
    Ieda T; Horii Y; Petrick G; Yamashita N; Ochiai N; Kannan K
    Environ Sci Technol; 2005 Sep; 39(18):7202-7. PubMed ID: 16201649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: a proposal of a metabolic pathway.
    Rózalska S; Szewczyk R; Długoński J
    J Hazard Mater; 2010 Aug; 180(1-3):323-31. PubMed ID: 20447765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological responses to nanoCuO in fungi from non-polluted and metal-polluted streams.
    Pradhan A; Seena S; Dobritzsch D; Helm S; Gerth K; Dobritzsch M; Krauss GJ; Schlosser D; Pascoal C; Cássio F
    Sci Total Environ; 2014 Jan; 466-467():556-63. PubMed ID: 23955249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of [(14)C] ring-labeled nonylphenol ethoxylate.
    Naylor CG; Staples CA; Klecka GM; Williams JB; Varineau PT; Cady C
    Arch Environ Contam Toxicol; 2006 Jul; 51(1):11-20. PubMed ID: 16485172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.