BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15632424)

  • 1. Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases.
    Junghanns C; Moeder M; Krauss G; Martin C; Schlosser D
    Microbiology (Reading); 2005 Jan; 151(Pt 1):45-57. PubMed ID: 15632424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the influence of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of the xenoestrogen technical nonylphenol by the aquatic hyphomycete Clavariopsis aquatica.
    Martin C; Corvini PF; Vinken R; Junghanns C; Krauss G; Schlosser D
    Appl Environ Microbiol; 2009 Jul; 75(13):4398-409. PubMed ID: 19429559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular laccase activity and transcript levels of putative laccase genes during removal of the xenoestrogen technical nonylphenol by the aquatic hyphomycete Clavariopsis aquatica.
    Solé M; Kellner H; Brock S; Buscot F; Schlosser D
    FEMS Microbiol Lett; 2008 Nov; 288(1):47-54. PubMed ID: 18764877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and physicochemical processes contributing to the removal of endocrine-disrupting chemicals and pharmaceuticals by the aquatic ascomycete Phoma sp. UHH 5-1-03.
    Hofmann U; Schlosser D
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2381-99. PubMed ID: 26536880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation by organic compounds and heavy metals of multiple laccase genes in the aquatic hyphomycete Clavariopsis aquatica.
    Solé M; Müller I; Pecyna MJ; Fetzer I; Harms H; Schlosser D
    Appl Environ Microbiol; 2012 Jul; 78(13):4732-9. PubMed ID: 22544244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments.
    Martin C; Moeder M; Daniel X; Krauss G; Schlosser D
    Environ Sci Technol; 2007 Aug; 41(15):5395-402. PubMed ID: 17822108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of 4-n-nonylphenol under nitrate reducing conditions.
    De Weert JP; Viñas M; Grotenhuis T; Rijnaarts HH; Langenhoff AA
    Biodegradation; 2011 Feb; 22(1):175-87. PubMed ID: 20640878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laccase production by the aquatic ascomycete Phoma sp. UHH 5-1-03 and the white rot basidiomycete Pleurotus ostreatus DSM 1833 during submerged cultivation on banana peels and enzyme applicability for the removal of endocrine-disrupting chemicals.
    Libardi N; Gern RM; Furlan SA; Schlosser D
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1144-56. PubMed ID: 22371062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial degradation of nonylphenol and other alkylphenols--our evolving view.
    Corvini PF; Schäffer A; Schlosser D
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):223-43. PubMed ID: 16826376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different pathways for 4-n-nonylphenol biodegradation by two Aspergillus strains derived from estuary sediment: Evidence from metabolites determination and key-gene identification.
    Yang Z; Shi Y; Zhang Y; Cheng Q; Li X; Zhao C; Zhang D
    J Hazard Mater; 2018 Oct; 359():203-212. PubMed ID: 30036750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial degradation of a single branched isomer of nonylphenol by Sphingomonas TTNP3.
    Corvini PF; Vinken R; Hommes G; Mundt M; Hollender J; Meesters R; Schröder HF; Schmidt B
    Water Sci Technol; 2004; 50(5):189-94. PubMed ID: 15497847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes.
    Tsutsumi Y; Haneda T; Nishida T
    Chemosphere; 2001 Jan; 42(3):271-6. PubMed ID: 11100927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-biodegradability relationship of nonylphenol isomers during biological wastewater treatment process.
    Hao R; Li J; Zhou Y; Cheng S; Zhang Y
    Chemosphere; 2009 May; 75(8):987-94. PubMed ID: 19251303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and biochemical characterization of a laccase from the aquatic fungus Myrioconium sp. UHH 1-13-18-4 and molecular analysis of the laccase-encoding gene.
    Martin C; Pecyna M; Kellner H; Jehmlich N; Junghanns C; Benndorf D; von Bergen M; Schlosser D
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):613-24. PubMed ID: 17955194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular docking simulation on the interactions of laccase from Trametes versicolor with nonylphenol and octylphenol isomers.
    Mo D; Zeng G; Yuan X; Chen M; Hu L; Li H; Wang H; Xu P; Lai C; Wan J; Zhang C; Cheng M
    Bioprocess Biosyst Eng; 2018 Mar; 41(3):331-343. PubMed ID: 29185034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship.
    Lu Z; Gan J
    Environ Sci Technol; 2014 Jan; 48(2):1008-14. PubMed ID: 24345275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of nonylphenol isomers in a technical mixture and in water by comprehensive two-dimensional gas chromatography-mass spectrometry.
    Ieda T; Horii Y; Petrick G; Yamashita N; Ochiai N; Kannan K
    Environ Sci Technol; 2005 Sep; 39(18):7202-7. PubMed ID: 16201649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: a proposal of a metabolic pathway.
    Rózalska S; Szewczyk R; Długoński J
    J Hazard Mater; 2010 Aug; 180(1-3):323-31. PubMed ID: 20447765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological responses to nanoCuO in fungi from non-polluted and metal-polluted streams.
    Pradhan A; Seena S; Dobritzsch D; Helm S; Gerth K; Dobritzsch M; Krauss GJ; Schlosser D; Pascoal C; Cássio F
    Sci Total Environ; 2014 Jan; 466-467():556-63. PubMed ID: 23955249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of [(14)C] ring-labeled nonylphenol ethoxylate.
    Naylor CG; Staples CA; Klecka GM; Williams JB; Varineau PT; Cady C
    Arch Environ Contam Toxicol; 2006 Jul; 51(1):11-20. PubMed ID: 16485172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.