These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15632429)

  • 1. Disruption of MRG19 results in altered nitrogen metabolic status and defective pseudohyphal development in Saccharomyces cerevisiae.
    Das M; Bhat PJ
    Microbiology (Reading); 2005 Jan; 151(Pt 1):91-98. PubMed ID: 15632429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of MRG19 of Saccharomyces cerevisiae. Implication in the regulation of galactose and nonfermentable carbon source utilization.
    Khanday FA; Saha M; Bhat PJ
    Eur J Biochem; 2002 Dec; 269(23):5840-50. PubMed ID: 12444972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mrg19 depletion increases S. cerevisiae lifespan by augmenting ROS defence.
    Kharade SV; Mittal N; Das SP; Sinha P; Roy N
    FEBS Lett; 2005 Dec; 579(30):6809-13. PubMed ID: 16336970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae.
    Avendaño A; Riego L; DeLuna A; Aranda C; Romero G; Ishida C; Vázquez-Acevedo M; Rodarte B; Recillas-Targa F; Valenzuela L; Zonszein S; González A
    Mol Microbiol; 2005 Jul; 57(1):291-305. PubMed ID: 15948967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae.
    Ter Schure EG; Silljé HHW; Vermeulen EE; Kalhorn JW; Verkleij AJ; Boonstra J; Verrips CT
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1451-1462. PubMed ID: 9611819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple copies of MRG19 suppress transcription of the GAL1 promoter in a GAL80-dependent manner in Saccharomyces cerevisiae.
    Kabir MA; Khanday FA; Mehta DV; Bhat PJ
    Mol Gen Genet; 2000 Jan; 262(6):1113-22. PubMed ID: 10660072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms.
    Dang VD; Bohn C; Bolotin-Fukuhara M; Daignan-Fornier B
    J Bacteriol; 1996 Apr; 178(7):1842-9. PubMed ID: 8606156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19 Saccharomyces cerevisiae.
    Mittal N; Babu MM; Roy N
    Aging Cell; 2009 Dec; 8(6):643-53. PubMed ID: 19732042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae.
    Soussi-Boudekou S; André B
    Mol Microbiol; 1999 Feb; 31(3):753-62. PubMed ID: 10048020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast.
    Schröder M; Chang JS; Kaufman RJ
    Genes Dev; 2000 Dec; 14(23):2962-75. PubMed ID: 11114886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae.
    Klein CJ; Rasmussen JJ; Rønnow B; Olsson L; Nielsen J
    J Biotechnol; 1999 Feb; 68(2-3):197-212. PubMed ID: 10194857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NADP
    Lee WH; Oh JY; Maeng PJ
    J Microbiol; 2019 Oct; 57(10):884-892. PubMed ID: 31376105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae.
    Rossell S; van der Weijden CC; Kruckeberg AL; Bakker BM; Westerhoff HV
    FEMS Yeast Res; 2005 Apr; 5(6-7):611-9. PubMed ID: 15780660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription.
    Luzzani C; Cardillo SB; Bermúdez Moretti M; Correa García S
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3677-3684. PubMed ID: 17975075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The S. cerevisiae nitrogen starvation-induced Yvh1p and Ptp2p phosphatases play a role in control of sporulation.
    Park HD; Beeser AE; Clancy MJ; Cooper TG
    Yeast; 1996 Sep; 12(11):1135-51. PubMed ID: 8896280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain.
    Lee JC; Straffon MJ; Jang TY; Higgins VJ; Grant CM; Dawes IW
    FEMS Yeast Res; 2001 Apr; 1(1):57-65. PubMed ID: 12702463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism.
    Bro C; Regenberg B; Nielsen J
    Biotechnol Bioeng; 2004 Feb; 85(3):269-76. PubMed ID: 14748081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.
    Oliveira EM; Mansure JJ; Bon EP
    FEMS Yeast Res; 2005 Apr; 5(6-7):605-9. PubMed ID: 15780659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.