BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15632682)

  • 1. Predicting energy expenditure from accelerometry counts in adolescent girls.
    Schmitz KH; Treuth M; Hannan P; McMurray R; Ring KB; Catellier D; Pate R
    Med Sci Sports Exerc; 2005 Jan; 37(1):155-61. PubMed ID: 15632682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. METs and accelerometry of walking in older adults: standard versus measured energy cost.
    Hall KS; Howe CA; Rana SR; Martin CL; Morey MC
    Med Sci Sports Exerc; 2013 Mar; 45(3):574-82. PubMed ID: 23059862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of energy expenditure and physical activity in preschoolers.
    Butte NF; Wong WW; Lee JS; Adolph AL; Puyau MR; Zakeri IF
    Med Sci Sports Exerc; 2014 Jun; 46(6):1216-26. PubMed ID: 24195866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting physical activity energy expenditure using accelerometry in adults from sub-Sahara Africa.
    Assah FK; Ekelund U; Brage S; Corder K; Wright A; Mbanya JC; Wareham NJ
    Obesity (Silver Spring); 2009 Aug; 17(8):1588-95. PubMed ID: 19247268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individualized Relative-Intensity Physical Activity Accelerometer Cut Points.
    Siddique J; Aaby D; Montag SE; Sidney S; Sternfeld B; Welch WA; Carnethon MR; Liu K; Craft LL; Pettee Gabriel K; Barone Gibbs B; Reis JP; Freedson P
    Med Sci Sports Exerc; 2020 Feb; 52(2):398-407. PubMed ID: 31524826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations.
    Lyden K; Kozey SL; Staudenmeyer JW; Freedson PS
    Eur J Appl Physiol; 2011 Feb; 111(2):187-201. PubMed ID: 20842375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refined two-regression model for the ActiGraph accelerometer.
    Crouter SE; Kuffel E; Haas JD; Frongillo EA; Bassett DR
    Med Sci Sports Exerc; 2010 May; 42(5):1029-37. PubMed ID: 20400882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling energy expenditure in children and adolescents using quantile regression.
    Yang Y; Adolph AL; Puyau MR; Vohra FA; Butte NF; Zakeri IF
    J Appl Physiol (1985); 2013 Jul; 115(2):251-9. PubMed ID: 23640591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerometer output and its association with energy expenditure in persons with mild-to-moderate Parkinson's disease.
    Jeng B; Cederberg KLJ; Lai B; Sasaki JE; Bamman MM; Motl RW
    PLoS One; 2020; 15(11):e0242136. PubMed ID: 33175904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting energy intake with an accelerometer-based intake-balance method.
    Hibbing PR; Shook RP; Panda S; Manoogian ENC; Mashek DG; Chow LS
    Br J Nutr; 2023 Jul; 130(2):344-352. PubMed ID: 36250527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors.
    Jayaraman C; Mummidisetty CK; Mannix-Slobig A; McGee Koch L; Jayaraman A
    J Neuroeng Rehabil; 2018 Mar; 15(1):19. PubMed ID: 29534737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of a laboratory-based protocol for measuring energy expenditure and accelerometer calibration in adults with intellectual disabilities.
    McGarty AM; Penpraze V; Dall PM; Haig C; Harris L; Melville CA
    Pilot Feasibility Stud; 2024 Jun; 10(1):94. PubMed ID: 38909244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy expenditure estimation from respiration variables.
    Gilgen-Ammann R; Koller M; Huber C; Ahola R; Korhonen T; Wyss T
    Sci Rep; 2017 Nov; 7(1):15995. PubMed ID: 29167536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards integrated physical activity profiling.
    Thompson D; Batterham AM
    PLoS One; 2013; 8(2):e56427. PubMed ID: 23437131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Youth Compendium of Physical Activities: Activity Codes and Metabolic Intensities.
    Butte NF; Watson KB; Ridley K; Zakeri IF; McMurray RG; Pfeiffer KA; Crouter SE; Herrmann SD; Bassett DR; Long A; Berhane Z; Trost SG; Ainsworth BE; Berrigan D; Fulton JE
    Med Sci Sports Exerc; 2018 Feb; 50(2):246-256. PubMed ID: 28938248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Wearable Activity Type Detection to Improve Physical Activity Energy Expenditure Estimation.
    Albinali F; Intille SS; Haskell W; Rosenberger M
    Proc ACM Int Conf Ubiquitous Comput; 2010 Sep; 2010():311-320. PubMed ID: 30191204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Cost of Performing Selected Adult and Child Care Activities.
    Meckes N; Vezina JW; Herrmann SD; Sawyer BJ; Angadi S; Ainsworth BE
    Int J Exerc Sci; 2013; 6(1):11-19. PubMed ID: 27293496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of energy expenditure and costs in neuroimaging.
    Signorile WJ; Mahajan A; Fulbright RK; Zubair AS
    J Neurol Sci; 2024 May; 460():123001. PubMed ID: 38616465
    [No Abstract]   [Full Text] [Related]  

  • 19. Predicting total energy expenditure.
    Westerterp KR
    Am J Clin Nutr; 2024 May; 119(5):1097-1098. PubMed ID: 38702107
    [No Abstract]   [Full Text] [Related]  

  • 20. Calibration of the Computer Science and Applications, Inc. accelerometer.
    Freedson PS; Melanson E; Sirard J
    Med Sci Sports Exerc; 1998 May; 30(5):777-81. PubMed ID: 9588623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.