These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 15632682)
1. Predicting energy expenditure from accelerometry counts in adolescent girls. Schmitz KH; Treuth M; Hannan P; McMurray R; Ring KB; Catellier D; Pate R Med Sci Sports Exerc; 2005 Jan; 37(1):155-61. PubMed ID: 15632682 [TBL] [Abstract][Full Text] [Related]
2. Predictive validity of three ActiGraph energy expenditure equations for children. Trost SG; Way R; Okely AD Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910 [TBL] [Abstract][Full Text] [Related]
3. Predicting Chinese children and youth's energy expenditure using ActiGraph accelerometers: a calibration and cross-validation study. Zhu Z; Chen P; Zhuang J Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S56-63. PubMed ID: 24527567 [TBL] [Abstract][Full Text] [Related]
4. Defining accelerometer thresholds for activity intensities in adolescent girls. Treuth MS; Schmitz K; Catellier DJ; McMurray RG; Murray DM; Almeida MJ; Going S; Norman JE; Pate R Med Sci Sports Exerc; 2004 Jul; 36(7):1259-66. PubMed ID: 15235335 [TBL] [Abstract][Full Text] [Related]
5. METs and accelerometry of walking in older adults: standard versus measured energy cost. Hall KS; Howe CA; Rana SR; Martin CL; Morey MC Med Sci Sports Exerc; 2013 Mar; 45(3):574-82. PubMed ID: 23059862 [TBL] [Abstract][Full Text] [Related]
6. Estimation of resistance exercise energy expenditure using accelerometry. Rawson ES; Walsh TM Med Sci Sports Exerc; 2010 Mar; 42(3):622-8. PubMed ID: 19952824 [TBL] [Abstract][Full Text] [Related]
7. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969 [TBL] [Abstract][Full Text] [Related]
8. Relationship between physical activity measured using accelerometers and energy expenditure measured using doubly labelled water in Indian children. Krishnaveni GV; Veena SR; Kuriyan R; Kishore RP; Wills AK; Nalinakshi M; Kehoe S; Fall CH; Kurpad AV Eur J Clin Nutr; 2009 Nov; 63(11):1313-9. PubMed ID: 19690580 [TBL] [Abstract][Full Text] [Related]
9. Validating accelerometry as a measure of physical activity and energy expenditure in chronic stroke. Serra MC; Balraj E; DiSanzo BL; Ivey FM; Hafer-Macko CE; Treuth MS; Ryan AS Top Stroke Rehabil; 2017 Jan; 24(1):18-23. PubMed ID: 27322733 [TBL] [Abstract][Full Text] [Related]
10. Use of a two-regression model for estimating energy expenditure in children. Crouter SE; Horton M; Bassett DR Med Sci Sports Exerc; 2012 Jun; 44(6):1177-85. PubMed ID: 22143114 [TBL] [Abstract][Full Text] [Related]
11. Calibration of an accelerometer during free-living activities in children. Mattocks C; Leary S; Ness A; Deere K; Saunders J; Tilling K; Kirkby J; Blair SN; Riddoch C Int J Pediatr Obes; 2007; 2(4):218-26. PubMed ID: 17852552 [TBL] [Abstract][Full Text] [Related]
12. Estimating energy expenditure using accelerometers. Crouter SE; Churilla JR; Bassett DR Eur J Appl Physiol; 2006 Dec; 98(6):601-12. PubMed ID: 17058102 [TBL] [Abstract][Full Text] [Related]
13. Physical activities in adolescent girls: variability in energy expenditure. Pfeiffer KA; Schmitz KH; McMurray RG; Treuth MS; Murray DM; Pate RR Am J Prev Med; 2006 Oct; 31(4):328-31. PubMed ID: 16979458 [TBL] [Abstract][Full Text] [Related]
14. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Swartz AM; Strath SJ; Bassett DR; O'Brien WL; King GA; Ainsworth BE Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S450-6. PubMed ID: 10993414 [TBL] [Abstract][Full Text] [Related]
15. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water. Chomistek AK; Yuan C; Matthews CE; Troiano RP; Bowles HR; Rood J; Barnett JB; Willett WC; Rimm EB; Bassett DR Med Sci Sports Exerc; 2017 Sep; 49(9):1935-1944. PubMed ID: 28419028 [TBL] [Abstract][Full Text] [Related]
16. Use of heart rate to predict energy expenditure from low to high activity levels. Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043 [TBL] [Abstract][Full Text] [Related]
17. Cross-sectional time series and multivariate adaptive regression splines models using accelerometry and heart rate predict energy expenditure of preschoolers. Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF J Nutr; 2013 Jan; 143(1):114-22. PubMed ID: 23190760 [TBL] [Abstract][Full Text] [Related]
18. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. Imboden MT; Nelson MB; Kaminsky LA; Montoye AH Br J Sports Med; 2018 Jul; 52(13):844-850. PubMed ID: 28483930 [TBL] [Abstract][Full Text] [Related]
19. Actigraph accelerometer-defined boundaries for sedentary behaviour and physical activity intensities in 7 year old children. Pulsford RM; Cortina-Borja M; Rich C; Kinnafick FE; Dezateux C; Griffiths LJ PLoS One; 2011; 6(8):e21822. PubMed ID: 21853021 [TBL] [Abstract][Full Text] [Related]
20. Accelerometer cut-points derived during over-ground walking in persons with mild, moderate, and severe multiple sclerosis. Sandroff BM; Riskin BJ; Agiovlasitis S; Motl RW J Neurol Sci; 2014 May; 340(1-2):50-7. PubMed ID: 24635890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]