BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15632682)

  • 21. Intensity classification accuracy of accelerometer-measured physical activities in Chinese children and youth.
    Zhu Z; Chen P; Zhuang J
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S4-11. PubMed ID: 24527562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validity of uniaxial accelerometry during activities of daily living in children.
    Eisenmann JC; Strath SJ; Shadrick D; Rigsby P; Hirsch N; Jacobson L
    Eur J Appl Physiol; 2004 Mar; 91(2-3):259-63. PubMed ID: 14569402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triaxial accelerometry for assessment of physical activity in young children.
    Tanaka C; Tanaka S; Kawahara J; Midorikawa T
    Obesity (Silver Spring); 2007 May; 15(5):1233-41. PubMed ID: 17495200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting physical activity energy expenditure in manual wheelchair users.
    Nightingale TE; Walhim JP; Thompson D; Bilzon JL
    Med Sci Sports Exerc; 2014 Sep; 46(9):1849-58. PubMed ID: 25134004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validity of estimating minute-by-minute energy expenditure of continuous walking bouts by accelerometry.
    Kuffel EE; Crouter SE; Haas JD; Frongillo EA; Bassett DR
    Int J Behav Nutr Phys Act; 2011 Aug; 8():92. PubMed ID: 21864359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utility of the actiheart accelerometer for estimating exercise energy expenditure in female adolescent runners.
    Nichols JF; Aralis H; Merino SG; Barrack MT; Stalker-Fader L; Rauh MJ
    Int J Sport Nutr Exerc Metab; 2010 Dec; 20(6):487-95. PubMed ID: 21116021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individualized Estimation of Physical Activity in Older Adults with Type 2 Diabetes.
    Welch WA; Alexander NB; Swartz AM; Miller NE; Twardzik E; Strath SJ
    Med Sci Sports Exerc; 2017 Nov; 49(11):2185-2190. PubMed ID: 28640060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerometry calibration in people with class II-III obesity: Energy expenditure prediction and physical activity intensity identification.
    Diniz-Sousa F; Veras L; Ribeiro JC; Boppre G; Devezas V; Santos-Sousa H; Preto J; Machado L; Vilas-Boas JP; Oliveira J; Fonseca H
    Gait Posture; 2020 Feb; 76():104-109. PubMed ID: 31756665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy Expenditure and Intensity of Group-Based High-Intensity Functional Training: A Brief Report.
    Willis EA; Szabo-Reed AN; Ptomey LT; Honas JJ; Steger FL; Washburn RA; Donnelly JE
    J Phys Act Health; 2019 Jun; 16(6):470-476. PubMed ID: 31104545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Field evaluation of energy expenditure in women using Tritrac accelerometers.
    Campbell KL; Crocker PR; McKenzie DC
    Med Sci Sports Exerc; 2002 Oct; 34(10):1667-74. PubMed ID: 12370570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of accelerometer cut points for predicting activity intensity in youth.
    Trost SG; Loprinzi PD; Moore R; Pfeiffer KA
    Med Sci Sports Exerc; 2011 Jul; 43(7):1360-8. PubMed ID: 21131873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of the ActiGraph two-regression model for predicting energy expenditure.
    Rothney MP; Brychta RJ; Meade NN; Chen KY; Buchowski MS
    Med Sci Sports Exerc; 2010 Sep; 42(9):1785-92. PubMed ID: 20142778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of five minimally obstructive methods to estimate physical activity energy expenditure in young adults in semi-standardized settings.
    Schneller MB; Pedersen MT; Gupta N; Aadahl M; Holtermann A
    Sensors (Basel); 2015 Mar; 15(3):6133-51. PubMed ID: 25781506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relative validity of 3 accelerometer models for estimating energy expenditure during light activity.
    Wetten AA; Batterham M; Tan SY; Tapsell L
    J Phys Act Health; 2014 Mar; 11(3):638-47. PubMed ID: 23417054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Actigraph GT3X: validation and determination of physical activity intensity cut points.
    Santos-Lozano A; Santín-Medeiros F; Cardon G; Torres-Luque G; Bailón R; Bergmeir C; Ruiz JR; Lucia A; Garatachea N
    Int J Sports Med; 2013 Nov; 34(11):975-82. PubMed ID: 23700330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Re-evaluation of accelerometer thresholds for MVPA at age 16 in subjects previously studied at age 12.
    Griffiths A; Mattocks C; Ness AR; Tilling K; Riddoch C; Leary S
    J Phys Act Health; 2012 Nov; 9(8):1163-7. PubMed ID: 23233431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of a wireless accelerometer network for energy expenditure measurement.
    Montoye AH; Dong B; Biswas S; Pfeiffer KA
    J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of energy expenditure and physical activity in preschoolers.
    Butte NF; Wong WW; Lee JS; Adolph AL; Puyau MR; Zakeri IF
    Med Sci Sports Exerc; 2014 Jun; 46(6):1216-26. PubMed ID: 24195866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.