These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 1563342)

  • 1. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus.
    Huijser P; Klein J; Lönnig WE; Meijer H; Saedler H; Sommer H
    EMBO J; 1992 Apr; 11(4):1239-49. PubMed ID: 1563342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development.
    Müller BM; Saedler H; Zachgo S
    Plant J; 2001 Oct; 28(2):169-79. PubMed ID: 11722760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA.
    Klein J; Saedler H; Huijser P
    Mol Gen Genet; 1996 Jan; 250(1):7-16. PubMed ID: 8569690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of SaMADS D from Sinapis alba suggests a dual function of the gene: in inflorescence development and floral organogenesis.
    Bonhomme F; Sommer H; Bernier G; Jacqmard A
    Plant Mol Biol; 1997 Jul; 34(4):573-82. PubMed ID: 9247539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes.
    Preston JC; Hileman LC
    Plant J; 2010 May; 62(4):704-12. PubMed ID: 20202170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus.
    Egea-Cortines M; Saedler H; Sommer H
    EMBO J; 1999 Oct; 18(19):5370-9. PubMed ID: 10508169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors.
    West AG; Causier BE; Davies B; Sharrocks AD
    Nucleic Acids Res; 1998 Dec; 26(23):5277-87. PubMed ID: 9826749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea.
    Taylor SA; Hofer JM; Murfet IC; Sollinger JD; Singer SR; Knox MR; Ellis TH
    Plant Physiol; 2002 Jul; 129(3):1150-9. PubMed ID: 12114569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A petunia MADS box gene involved in the transition from vegetative to reproductive development.
    Immink RG; Hannapel DJ; Ferrario S; Busscher M; Franken J; Lookeren Campagne MM; Angenent GC
    Development; 1999 Nov; 126(22):5117-26. PubMed ID: 10529428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple.
    Sung SK; Yu GH; An G
    Plant Physiol; 1999 Aug; 120(4):969-78. PubMed ID: 10444080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Analysis of Five
    Zhang Y; Zhang J; Song M; Lin X; Tong Z; Ding M
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition.
    Ruokolainen S; Ng YP; Broholm SK; Albert VA; Elomaa P; Teeri TH
    BMC Plant Biol; 2010 Jun; 10():128. PubMed ID: 20579337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition.
    Yu H; Goh CJ
    Plant Physiol; 2000 Aug; 123(4):1325-36. PubMed ID: 10938351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species.
    Berbel A; Navarro C; Ferrándiz C; Cañas LA; Madueño F; Beltrán JP
    Plant J; 2001 Feb; 25(4):441-51. PubMed ID: 11260500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors.
    Sommer H; Beltrán JP; Huijser P; Pape H; Lönnig WE; Saedler H; Schwarz-Sommer Z
    EMBO J; 1990 Mar; 9(3):605-13. PubMed ID: 1968830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced transcription of a LEAFY-like gene in Alstroemeria sp. cultivar Green Coral that cannot develop floral meristems.
    Hirai M; Yamagishi M; Kanno A
    Plant Sci; 2012 Apr; 185-186():298-308. PubMed ID: 22325893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of tobacco MADS-box genes involved in floral initiation.
    Jang S; An K; Lee S; An G
    Plant Cell Physiol; 2002 Feb; 43(2):230-8. PubMed ID: 11867703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis.
    Tröbner W; Ramirez L; Motte P; Hue I; Huijser P; Lönnig WE; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1992 Dec; 11(13):4693-704. PubMed ID: 1361166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation.
    Chen MK; Lin IC; Yang CH
    Plant Cell Physiol; 2008 May; 49(5):704-17. PubMed ID: 18367516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.