BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15633456)

  • 1. Lysenin: a new tool for investigating membrane lipid organization.
    Ishitsuka R; Kobayashi T
    Anat Sci Int; 2004 Dec; 79(4):184-90. PubMed ID: 15633456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysenin: a sphingomyelin specific pore-forming toxin.
    Shogomori H; Kobayashi T
    Biochim Biophys Acta; 2008 Mar; 1780(3):612-8. PubMed ID: 17980968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging lipid rafts.
    Ishitsuka R; Sato SB; Kobayashi T
    J Biochem; 2005 Mar; 137(3):249-54. PubMed ID: 15809325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains.
    Kishimoto T; Ishitsuka R; Kobayashi T
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):812-829. PubMed ID: 26993577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the distribution and dynamics of signaling microdomains in living cells with lipid-specific probes.
    Hullin-Matsuda F; Kobayashi T
    Cell Mol Life Sci; 2007 Oct; 64(19-20):2492-504. PubMed ID: 17876518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingomyelin-rich domains are sites of lysenin oligomerization: implications for raft studies.
    Kulma M; Hereć M; Grudziński W; Anderluh G; Gruszecki WI; Kwiatkowska K; Sobota A
    Biochim Biophys Acta; 2010 Mar; 1798(3):471-81. PubMed ID: 20018171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging lipid membrane domains with lipid-specific probes.
    Hullin-Matsuda F; Ishitsuka R; Takahashi M; Kobayashi T
    Methods Mol Biol; 2009; 580():203-20. PubMed ID: 19784601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysenin, a unique sphingomyelin-binding protein.
    Shakor AB; Czurylo EA; Sobota A
    FEBS Lett; 2003 May; 542(1-3):1-6. PubMed ID: 12729887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy.
    Abe M; Kobayashi T
    Biochim Biophys Acta; 2014 May; 1841(5):720-6. PubMed ID: 23860017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sensing of membrane microdomains based on pore-forming toxins.
    Skočaj M; Bakrač B; Križaj I; Maček P; Anderluh G; Sepčić K
    Curr Med Chem; 2013; 20(4):491-501. PubMed ID: 23244522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysenin-sphingomyelin binding at the surface of oligodendrocyte lineage cells increases during differentiation in vitro.
    Nakai Y; Sakurai Y; Yamaji A; Asou H; Umeda M; Uyemura K; Itoh K
    J Neurosci Res; 2000 Nov; 62(4):521-9. PubMed ID: 11070495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and functional heterogeneity of sphingolipid-rich membrane domains.
    Kiyokawa E; Baba T; Otsuka N; Makino A; Ohno S; Kobayashi T
    J Biol Chem; 2005 Jun; 280(25):24072-84. PubMed ID: 15840575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes.
    Ishitsuka R; Yamaji-Hasegawa A; Makino A; Hirabayashi Y; Kobayashi T
    Biophys J; 2004 Jan; 86(1 Pt 1):296-307. PubMed ID: 14695271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raft coalescence and FcγRIIA activation upon sphingomyelin clustering induced by lysenin.
    Kulma M; Kwiatkowska K; Sobota A
    Cell Signal; 2012 Aug; 24(8):1641-7. PubMed ID: 22542851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells.
    Nagata Y; Kobayashi H; Umeda M; Ohta N; Kawashima S; Zammit PS; Matsuda R
    J Histochem Cytochem; 2006 Apr; 54(4):375-84. PubMed ID: 16400000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramembrane congestion effects on lysenin channel voltage-induced gating.
    Krueger E; Bryant S; Shrestha N; Clark T; Hanna C; Pink D; Fologea D
    Eur Biophys J; 2016 Mar; 45(2):187-94. PubMed ID: 26695013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of sphingomyelin- and cholesterol-enriched lipid domains during cytokinesis.
    Abe M; Kobayashi T
    Methods Cell Biol; 2017; 137():15-24. PubMed ID: 28065303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of the mechanisms of cytolytic and antibacterial activity of lysenin, a defence protein of the annelid Eisenia fetida.
    Bruhn H; Winkelmann J; Andersen C; Andrä J; Leippe M
    Dev Comp Immunol; 2006; 30(7):597-606. PubMed ID: 16386304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin.
    Alam JM; Kobayashi T; Yamazaki M
    Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.