BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15633456)

  • 21. Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase.
    Hanada K; Hara T; Fukasawa M; Yamaji A; Umeda M; Nishijima M
    J Biol Chem; 1998 Dec; 273(50):33787-94. PubMed ID: 9837968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts.
    Komatsuya K; Kaneko K; Kasahara K
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32748854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding.
    Kwiatkowska K; Hordejuk R; Szymczyk P; Kulma M; Abdel-Shakor AB; Płucienniczak A; Dołowy K; Szewczyk A; Sobota A
    Mol Membr Biol; 2007; 24(2):121-34. PubMed ID: 17453419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detergent-resistant membranes and the protein composition of lipid rafts.
    Magee AI; Parmryd I
    Genome Biol; 2003; 4(11):234. PubMed ID: 14611651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts).
    Waheed AA; Shimada Y; Heijnen HF; Nakamura M; Inomata M; Hayashi M; Iwashita S; Slot JW; Ohno-Iwashita Y
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4926-31. PubMed ID: 11309501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization.
    Mound A; Lozanova V; Warnon C; Hermant M; Robic J; Guere C; Vie K; Lambert de Rouvroit C; Tyteca D; Debacq-Chainiaux F; Poumay Y
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):958-971. PubMed ID: 28599891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biology of lysenin, a protein in the coelomic fluid of the earthworm Eisenia foetida.
    Kobayashi H; Ohta N; Umeda M
    Int Rev Cytol; 2004; 236():45-99. PubMed ID: 15261736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysenin, a novel sphingomyelin-specific binding protein.
    Yamaji A; Sekizawa Y; Emoto K; Sakuraba H; Inoue K; Kobayashi H; Umeda M
    J Biol Chem; 1998 Feb; 273(9):5300-6. PubMed ID: 9478988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin.
    Yamaji-Hasegawa A; Makino A; Baba T; Senoh Y; Kimura-Suda H; Sato SB; Terada N; Ohno S; Kiyokawa E; Umeda M; Kobayashi T
    J Biol Chem; 2003 Jun; 278(25):22762-70. PubMed ID: 12676961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholesterol and lipid/protein ratio control the oligomerization of a sphingomyelin-specific toxin, lysenin.
    Ishitsuka R; Kobayashi T
    Biochemistry; 2007 Feb; 46(6):1495-502. PubMed ID: 17243772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rafts--the current picture.
    Grzybek M; Kozubek A; Dubielecka P; Sikorski AF
    Folia Histochem Cytobiol; 2005; 43(1):3-10. PubMed ID: 15871556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exposure of phosphatidylinositol transfer proteins to sphingomyelin-cholesterol membranes suggests transient but productive interactions with raft-like, liquid-ordered domains.
    Miller EC; Helmkamp GM
    Biochemistry; 2003 Nov; 42(45):13250-9. PubMed ID: 14609336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition of sphingomyelin by lysenin and lysenin-related proteins.
    Kiyokawa E; Makino A; Ishii K; Otsuka N; Yamaji-Hasegawa A; Kobayashi T
    Biochemistry; 2004 Aug; 43(30):9766-73. PubMed ID: 15274631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin.
    Yilmaz N; Yamaji-Hasegawa A; Hullin-Matsuda F; Kobayashi T
    Semin Cell Dev Biol; 2018 Jan; 73():188-198. PubMed ID: 28751253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Domain-specific lipid distribution in macrophage plasma membranes.
    Gaus K; Rodriguez M; Ruberu KR; Gelissen I; Sloane TM; Kritharides L; Jessup W
    J Lipid Res; 2005 Jul; 46(7):1526-38. PubMed ID: 15863834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary structure and orientation of the pore-forming toxin lysenin in a sphingomyelin-containing membrane.
    Hereć M; Gagoś M; Kulma M; Kwiatkowska K; Sobota A; Gruszecki WI
    Biochim Biophys Acta; 2008 Apr; 1778(4):872-9. PubMed ID: 18178147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid microdomains in model and biological membranes: how strong are the connections?
    Silvius J
    Q Rev Biophys; 2005 Nov; 38(4):373-83. PubMed ID: 16600056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sphingomyelin and its role in cellular signaling.
    Chakraborty M; Jiang XC
    Adv Exp Med Biol; 2013; 991():1-14. PubMed ID: 23775687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanodomains in biological membranes.
    Ma Y; Hinde E; Gaus K
    Essays Biochem; 2015; 57():93-107. PubMed ID: 25658347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.