These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15634041)

  • 1. Correlation energy extrapolation by intrinsic scaling. I. Method and application to the neon atom.
    Bytautas L; Ruedenberg K
    J Chem Phys; 2004 Dec; 121(22):10905-18. PubMed ID: 15634041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation energy extrapolation by intrinsic scaling. II. The water and the nitrogen molecule.
    Bytautas L; Ruedenberg K
    J Chem Phys; 2004 Dec; 121(22):10919-34. PubMed ID: 15634042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate ab initio potential energy curve of F2. I. Nonrelativistic full valence configuration interaction energies using the correlation energy extrapolation by intrinsic scaling method.
    Bytautas L; Nagata T; Gordon MS; Ruedenberg K
    J Chem Phys; 2007 Oct; 127(16):164317. PubMed ID: 17979348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate ab initio potential energy curve of O2. I. Nonrelativistic full configuration interaction valence correlation by the correlation energy extrapolation by intrinsic scaling method.
    Bytautas L; Ruedenberg K
    J Chem Phys; 2010 Feb; 132(7):074109. PubMed ID: 20170217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation energy extrapolation by intrinsic scaling. V. Electronic energy, atomization energy, and enthalpy of formation of water.
    Bytautas L; Ruedenberg K
    J Chem Phys; 2006 May; 124(17):174304. PubMed ID: 16689568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation energy extrapolation by intrinsic scaling. IV. Accurate binding energies of the homonuclear diatomic molecules carbon, nitrogen, oxygen, and fluorine.
    Bytautas L; Ruedenberg K
    J Chem Phys; 2005 Apr; 122(15):154110. PubMed ID: 15945628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions.
    Marchetti O; Werner HJ
    Phys Chem Chem Phys; 2008 Jun; 10(23):3400-9. PubMed ID: 18535723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate pair interaction energies for helium from supermolecular Gaussian geminal calculations.
    Patkowski K; Cencek W; Jeziorska M; Jeziorski B; Szalewicz K
    J Phys Chem A; 2007 Aug; 111(31):7611-23. PubMed ID: 17550239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate ab initio potentials at low cost via correlation scaling and extrapolation: application to CO(A 1Pi).
    Varandas AJ
    J Chem Phys; 2007 Sep; 127(11):114316. PubMed ID: 17887846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled-cluster with active space selected higher amplitudes: performance of seminatural orbitals for ground and excited state calculations.
    Köhn A; Olsen J
    J Chem Phys; 2006 Nov; 125(17):174110. PubMed ID: 17100432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential energy surface for interactions between two hydrogen molecules.
    Patkowski K; Cencek W; Jankowski P; Szalewicz K; Mehl JB; Garberoglio G; Harvey AH
    J Chem Phys; 2008 Sep; 129(9):094304. PubMed ID: 19044867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The convergence of complete active space self-consistent-field configuration interaction including all single and double excitation energies to the complete basis set limit.
    Petersson GA; Malick DK; Frisch MJ; Braunstein M
    J Chem Phys; 2006 Jul; 125(4):44107. PubMed ID: 16942134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate global potential energy surface and reaction dynamics for the ground state of HgBr2.
    Balabanov NB; Shepler BC; Peterson KA
    J Phys Chem A; 2005 Oct; 109(39):8765-73. PubMed ID: 16834279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory.
    Heckert M; Kállay M; Tew DP; Klopper W; Gauss J
    J Chem Phys; 2006 Jul; 125(4):44108. PubMed ID: 16942135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrapolating potential energy surfaces by scaling electron correlation: isomerization of bicyclobutane to butadiene.
    Lutz JJ; Piecuch P
    J Chem Phys; 2008 Apr; 128(15):154116. PubMed ID: 18433199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The barrier height of the F+H2 reaction revisited: coupled-cluster and multireference configuration-interaction benchmark calculations.
    Werner HJ; Kállay M; Gauss J
    J Chem Phys; 2008 Jan; 128(3):034305. PubMed ID: 18205496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The range of electron correlation between localized molecular orbitals. A full configuration interaction analysis for the NCCN molecule.
    Bytautas L; Ruedenberg K
    J Phys Chem A; 2010 Aug; 114(33):8601-12. PubMed ID: 20387786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ab initio study of the lowest electronic states of yttrium dicarbide, YC2.
    Puzzarini C; Peterson KA
    J Chem Phys; 2005 Feb; 122(8):84323. PubMed ID: 15836055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multireference configuration interaction studies on the ground and excited states of N2O2: the potential energy curves of N2O2 along N-N distance.
    Li Y; Vo CK
    J Chem Phys; 2006 Sep; 125(9):094303. PubMed ID: 16965076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lowest energy states of the group-IIIA-group-VA heteronuclear diatomics: BN, BP, AlN, and AlP from full configuration interaction calculations.
    Gan Z; Grant DJ; Harrison RJ; Dixon DA
    J Chem Phys; 2006 Sep; 125(12):124311. PubMed ID: 17014178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.