These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 15634071)

  • 1. Dynamics of glass-forming liquids. IX. Structural versus dielectric relaxation in monohydroxy alcohols.
    Wang LM; Richert R
    J Chem Phys; 2004 Dec; 121(22):11170-6. PubMed ID: 15634071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.
    Jakobsen B; Maggi C; Christensen T; Dyre JC
    J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ideal mixing behavior of the debye process in supercooled monohydroxy alcohols.
    Wang LM; Richert R
    J Phys Chem B; 2005 May; 109(18):8767-73. PubMed ID: 16852040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of dielectric and structural relaxations in glass-forming secondary amides.
    Wang LM; Richert R
    J Chem Phys; 2005 Aug; 123(5):054516. PubMed ID: 16108678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diluent effects on the Debye-type dielectric relaxation in viscous monohydroxy alcohols.
    Wang LM; Shahriari S; Richert R
    J Phys Chem B; 2005 Dec; 109(49):23255-62. PubMed ID: 16375290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Debye type dielectric relaxation and the glass transition of alcohols.
    Wang LM; Richert R
    J Phys Chem B; 2005 Jun; 109(22):11091-4. PubMed ID: 16852352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calorimetric versus kinetic glass transitions in viscous monohydroxy alcohols.
    Wang LM; Tian Y; Liu R; Richert R
    J Chem Phys; 2008 Feb; 128(8):084503. PubMed ID: 18315057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diluting the hydrogen bonds in viscous solutions of n-butanol with n-bromobutane: a dielectric study.
    El Goresy T; Böhmer R
    J Chem Phys; 2008 Apr; 128(15):154520. PubMed ID: 18433248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual dielectric strength of Debye relaxation in monohydroxy alcohols upon mixing.
    Gong H; Chen Z; Bi D; Sun M; Tian Y; Wang LM
    J Phys Chem B; 2012 Sep; 116(37):11482-7. PubMed ID: 22913462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol.
    Huth H; Wang LM; Schick C; Richert R
    J Chem Phys; 2007 Mar; 126(10):104503. PubMed ID: 17362071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Debye-type dielectric relaxation in glass-forming 3-methylthio-1-hexanol.
    Gao Y; Bi D; Li X; Liu R; Tian Y; Wang LM
    J Chem Phys; 2013 Jul; 139(2):024503. PubMed ID: 23862949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols.
    Gao Y; Tu W; Chen Z; Tian Y; Liu R; Wang LM
    J Chem Phys; 2013 Oct; 139(16):164504. PubMed ID: 24182046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols.
    Bauer S; Burlafinger K; Gainaru C; Lunkenheimer P; Hiller W; Loidl A; Böhmer R
    J Chem Phys; 2013 Mar; 138(9):094505. PubMed ID: 23485311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition.
    Ito N; Richert R
    J Phys Chem B; 2007 May; 111(18):5016-22. PubMed ID: 17474705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights on the origin of the Debye process in monoalcohols from dielectric spectroscopy under extreme pressure conditions.
    Fragiadakis D; Roland CM; Casalini R
    J Chem Phys; 2010 Apr; 132(14):144505. PubMed ID: 20405999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Debye response for the structural relaxation in glass-forming liquids: test of the Avramov model.
    Puzenko A; Ishai PB; Paluch M
    J Chem Phys; 2007 Sep; 127(9):094503. PubMed ID: 17824744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superdipole liquid scenario for the dielectric primary relaxation in supercooled polar liquids.
    Huang YN; Wang CJ; Riande E
    J Chem Phys; 2005 Apr; 122(14):144502. PubMed ID: 15847540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of glass-forming liquids. VIII. Dielectric signature of probe rotation and bulk dynamics in branched alkanes.
    Shahriari S; Mandanici A; Wang LM; Richert R
    J Chem Phys; 2004 Nov; 121(18):8960-7. PubMed ID: 15527361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols.
    Wikarek M; Pawlus S; Tripathy SN; Szulc A; Paluch M
    J Phys Chem B; 2016 Jun; 120(25):5744-52. PubMed ID: 27254726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of glass-forming liquids. XIV. A search for ultraslow dielectric relaxation in glycerol.
    Richert R
    J Chem Phys; 2010 Aug; 133(7):074502. PubMed ID: 20726647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.