These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15634170)

  • 1. Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations.
    Tolpekina TV; den Otter WK; Briels WJ
    J Chem Phys; 2004 Dec; 121(23):12060-6. PubMed ID: 15634170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore nucleation in mechanically stretched bilayer membranes.
    Wang ZJ; Frenkel D
    J Chem Phys; 2005 Oct; 123(15):154701. PubMed ID: 16252963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations.
    Wohlert J; den Otter WK; Edholm O; Briels WJ
    J Chem Phys; 2006 Apr; 124(15):154905. PubMed ID: 16674263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pores in bilayer membranes of amphiphilic molecules: coarse-grained molecular dynamics simulations compared with simple mesoscopic models.
    Loison C; Mareschal M; Schmid F
    J Chem Phys; 2004 Jul; 121(4):1890-900. PubMed ID: 15260741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free energies of stable and metastable pores in lipid membranes under tension.
    den Otter WK
    J Chem Phys; 2009 Nov; 131(20):205101. PubMed ID: 19947707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop.
    Tieleman DP; Marrink SJ
    J Am Chem Soc; 2006 Sep; 128(38):12462-7. PubMed ID: 16984196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulations of droplet coalescence in oil/water/surfactant systems.
    Rekvig L; Frenkel D
    J Chem Phys; 2007 Oct; 127(13):134701. PubMed ID: 17919037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore formation in fluctuating membranes.
    Farago O; Santangelo CD
    J Chem Phys; 2005 Jan; 122(4):44901. PubMed ID: 15740292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The free energy of nanopores in tense membranes.
    Grafmüller A; Knecht V
    Phys Chem Chem Phys; 2014 Jun; 16(23):11270-8. PubMed ID: 24780914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modeling of surfactant covered oil-water interfaces: Dynamics, microstructure, and barrier for mass transport.
    Gupta A; Chauhan A; Kopelevich DI
    J Chem Phys; 2008 Jun; 128(23):234709. PubMed ID: 18570521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of edge behavior in a mixed-lipid bilayer: fluctuation analysis.
    Jiang Y; Kindt JT
    J Chem Phys; 2007 Jan; 126(4):045105. PubMed ID: 17286515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of surfactant bilayer membranes from atomistic and coarse-grained molecular dynamics simulations.
    Boek ES; Padding JT; den Otter WK; Briels WJ
    J Phys Chem B; 2005 Oct; 109(42):19851-8. PubMed ID: 16853567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric-field-controlled water and ion permeation of a hydrophobic nanopore.
    Dzubiella J; Hansen JP
    J Chem Phys; 2005 Jun; 122(23):234706. PubMed ID: 16008472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes.
    Bennett WF; MacCallum JL; Tieleman DP
    J Am Chem Soc; 2009 Feb; 131(5):1972-8. PubMed ID: 19146400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous formation of a barrel-stave pore in a coarse-grained model of the synthetic LS3 peptide and a DPPC lipid bilayer.
    Gkeka P; Sarkisov L
    J Phys Chem B; 2009 Jan; 113(1):6-8. PubMed ID: 19072238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasihomogeneous nucleation of amyloid beta yields numerical bounds for the critical radius, the surface tension, and the free energy barrier for nucleus formation.
    Garai K; Sahoo B; Sengupta P; Maiti S
    J Chem Phys; 2008 Jan; 128(4):045102. PubMed ID: 18248009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model.
    Lee H; Larson RG
    J Phys Chem B; 2006 Sep; 110(37):18204-11. PubMed ID: 16970437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-grained model simulations of mixed-lipid systems: composition and line tension of a stabilized bilayer edge.
    de Joannis J; Jiang FY; Kindt JT
    Langmuir; 2006 Jan; 22(3):998-1005. PubMed ID: 16430259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.