These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15634200)

  • 21. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth.
    Rashotte AM; DeLong A; Muday GK
    Plant Cell; 2001 Jul; 13(7):1683-97. PubMed ID: 11449059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley.
    Fridborg I; Kuusk S; Robertson M; Sundberg E
    Plant Physiol; 2001 Nov; 127(3):937-48. PubMed ID: 11706176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pleiotropic effects of the male sterile33 (ms33) mutation in Arabidopsis are associated with modifications in endogenous gibberellins, indole-3-acetic acid and abscisic acid.
    Fei H; Zhang R; Pharis RP; Sawhney VK
    Planta; 2004 Aug; 219(4):649-60. PubMed ID: 15107994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a dwarf mutant allele of Arabidopsis MDR-like ABC transporter AtPGP1 gene.
    Ye L; Liu L; Xing A; Kang D
    Biochem Biophys Res Commun; 2013 Nov; 441(4):782-6. PubMed ID: 24211579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auxin promotes Arabidopsis root growth by modulating gibberellin response.
    Fu X; Harberd NP
    Nature; 2003 Feb; 421(6924):740-3. PubMed ID: 12610625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Balcerowicz M; Ranjan A; Rupprecht L; Fiene G; Hoecker U
    Development; 2014 Aug; 141(16):3165-76. PubMed ID: 25063454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.
    Suzuki M; Yamazaki C; Mitsui M; Kakei Y; Mitani Y; Nakamura A; Ishii T; Soeno K; Shimada Y
    Plant Cell Rep; 2015 Aug; 34(8):1343-52. PubMed ID: 25903543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis.
    Sukumar P; Maloney GS; Muday GK
    Plant Physiol; 2013 Jul; 162(3):1392-405. PubMed ID: 23677937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development.
    Regnault T; Davière JM; Heintz D; Lange T; Achard P
    Plant J; 2014 Nov; 80(3):462-74. PubMed ID: 25146977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxin transport: why plants like to think BIG.
    Luschnig C
    Curr Biol; 2001 Oct; 11(20):R831-3. PubMed ID: 11676938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential Cellular Control by Cotyledon-Derived Phytohormones Involved in Graft Reunion of Arabidopsis Hypocotyls.
    Matsuoka K; Sugawara E; Aoki R; Takuma K; Terao-Morita M; Satoh S; Asahina M
    Plant Cell Physiol; 2016 Dec; 57(12):2620-2631. PubMed ID: 27986917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases causes growth defects possibly due to abnormal auxin transport in Arabidopsis.
    Kim B; Kim G; Fujioka S; Takatsuto S; Choe S
    Mol Cells; 2012 Jul; 34(1):77-84. PubMed ID: 22673766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants.
    Schomburg FM; Bizzell CM; Lee DJ; Zeevaart JA; Amasino RM
    Plant Cell; 2003 Jan; 15(1):151-63. PubMed ID: 12509528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction.
    Jacobsen SE; Olszewski NE
    Plant Cell; 1993 Aug; 5(8):887-96. PubMed ID: 8400871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.
    Krishna Reddy S; Finlayson SA
    Plant Physiol; 2014 Mar; 164(3):1542-50. PubMed ID: 24492336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport.
    Lin R; Wang H
    Plant Physiol; 2005 Jun; 138(2):949-64. PubMed ID: 15908594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gibberellins play an essential role in late embryogenesis of Arabidopsis.
    Hu Y; Zhou L; Huang M; He X; Yang Y; Liu X; Li Y; Hou X
    Nat Plants; 2018 May; 4(5):289-298. PubMed ID: 29725104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced resistance to the cellulose biosynthetic inhibitors, thaxtomin A and isoxaben in Arabidopsis thaliana mutants, also provides specific co-resistance to the auxin transport inhibitor, 1-NPA.
    Tegg RS; Shabala SN; Cuin TA; Davies NW; Wilson CR
    BMC Plant Biol; 2013 May; 13():76. PubMed ID: 23638731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auxin-cytokinin and auxin-gibberellin interactions during morphogenesis of the compound leaves of pea (Pisum sativum).
    DeMason DA
    Planta; 2005 Sep; 222(1):151-66. PubMed ID: 15809864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.