These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15634435)

  • 1. [A biomechanical study on cervical spinal posture and prior loading history affecting spinal compressive strength].
    Ma X; Li QL; Fan YG
    Zhonghua Wai Ke Za Zhi; 2004 Nov; 42(21):1322-4. PubMed ID: 15634435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: a biomechanical study using a porcine cervical spine model.
    Gunning JL; Callaghan JP; McGill SM
    Clin Biomech (Bristol, Avon); 2001 Jul; 16(6):471-80. PubMed ID: 11427289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of posture and loading on interfacet spacing: an investigation using magnetic resonance imaging on porcine spinal units.
    Drake JD; Dobson H; Callaghan JP
    Spine (Phila Pa 1976); 2008 Sep; 33(20):E728-34. PubMed ID: 18794747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intervertebral neural foramina deformation due to two types of repetitive combined loading.
    Drake JD; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):1-6. PubMed ID: 19008024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
    Gooyers CE; McMillan RD; Howarth SJ; Callaghan JP
    Spine (Phila Pa 1976); 2012 Aug; 37(17):E1023-9. PubMed ID: 22472807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental biomechanics of the cervical spine: Tension and compression.
    Nuckley DJ; Ching RP
    J Biomech; 2006; 39(16):3045-54. PubMed ID: 16321394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude.
    Parkinson RJ; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):148-54. PubMed ID: 19121880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength of the cervical spine in compression and bending.
    Przybyla AS; Skrzypiec D; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Jul; 32(15):1612-20. PubMed ID: 17621208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Head-turned postures increase the risk of cervical facet capsule injury during whiplash.
    Siegmund GP; Davis MB; Quinn KP; Hines E; Myers BS; Ejima S; Ono K; Kamiji K; Yasuki T; Winkelstein BA
    Spine (Phila Pa 1976); 2008 Jul; 33(15):1643-9. PubMed ID: 18594456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration.
    Baranto A; Ekström L; Holm S; Hellström M; Hansson HA; Swärd L
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1046-54. PubMed ID: 16102879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When are intervertebral discs stronger than their adjacent vertebrae?
    Skrzypiec D; Tarala M; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2455-61. PubMed ID: 18090085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical evaluation of a new total posterior-element replacement system.
    Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J
    Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postural influence on the neutral zone of the porcine cervical spine under anterior-posterior shear load.
    Howarth SJ; Gallagher KM; Callaghan JP
    Med Eng Phys; 2013 Jul; 35(7):910-8. PubMed ID: 22989527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxation of forces needed to distract cervical vertebrae after discectomy: a biomechanical study.
    Aryan HE; Newman CB; Lu DC; Hu SS; Tay BK; Bradford DS; Puttlitz CM; Ames CP
    J Spinal Disord Tech; 2009 Apr; 22(2):100-4. PubMed ID: 19342931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of the aging spine.
    Board D; Stemper BD; Yoganandan N; Pintar FA; Shender B; Paskoff G
    Biomed Sci Instrum; 2006; 42():1-6. PubMed ID: 16817576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental biomechanics of the human cervical spine.
    Nuckley DJ; Linders DR; Ching RP
    J Biomech; 2013 Apr; 46(6):1147-54. PubMed ID: 23415075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in spinal height following sustained lumbar flexion and extension postures: a clinical measure of intervertebral disc hydration using stadiometry.
    Owens SC; Brismée JM; Pennell PN; Dedrick GS; Sizer PS; James CR
    J Manipulative Physiol Ther; 2009 Jun; 32(5):358-63. PubMed ID: 19539118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive force magnitude and intervertebral joint flexion/extension angle influence shear failure force magnitude in the porcine cervical spine.
    Howarth SJ; Callaghan JP
    J Biomech; 2012 Feb; 45(3):484-90. PubMed ID: 22196209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical evaluation of cervical spine fixation after healing in a destabilized cervical spine model in sheep: a comparison of the anterior plating and posterior wiring techniques.
    Lee MY; Chang GL; Chang JH; Hung YC; Chang CH; Lee EJ
    J Trauma; 2006 Jun; 60(6):1307-14. PubMed ID: 16766976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.