These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15634977)

  • 81. Cloning and transcriptional analysis of groES and groEL in ethanol-producing bacterium Zymomonas mobilis TISTR 548.
    Thanonkeo P; Sootsuwan K; Leelavacharamas V; Yamada M
    Pak J Biol Sci; 2007 Jan; 10(1):13-22. PubMed ID: 19069981
    [TBL] [Abstract][Full Text] [Related]  

  • 82. High-throughput species identification of enterococci using pyrosequencing.
    Zaheer R; Yanke LJ; Church D; Topp E; Read RR; McAllister TA
    J Microbiol Methods; 2012 Jun; 89(3):174-8. PubMed ID: 22465481
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Application of tRNA intergenic spacer PCR for identification of Enterococcus species.
    Baele M; Baele P; Vaneechoutte M; Storms V; Butaye P; Devriese LA; Verschraegen G; Gillis M; Haesebrouck F
    J Clin Microbiol; 2000 Nov; 38(11):4201-7. PubMed ID: 11060090
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Cloning and sequence of the groESL heat-shock operon of Pasteurella multocida.
    Love BC; Hansen LM; Hirsh DC
    Gene; 1995 Dec; 166(1):179-80. PubMed ID: 8529887
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The groESL operon of Agrobacterium tumefaciens: evidence for heat shock-dependent mRNA cleavage.
    Segal G; Ron EZ
    J Bacteriol; 1995 Feb; 177(3):750-7. PubMed ID: 7530710
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Primary and secondary structures of rRNA spacer regions in enterococci.
    Naïmi A; Beck G; Branlant C
    Microbiology (Reading); 1997 Mar; 143 ( Pt 3)():823-834. PubMed ID: 9084166
    [TBL] [Abstract][Full Text] [Related]  

  • 87. GroEL/GroES interaction assayed by protease protection.
    Martin J
    Methods Mol Biol; 2000; 140():71-4. PubMed ID: 11484495
    [No Abstract]   [Full Text] [Related]  

  • 88. Incidence of Type II CRISPR1-Cas Systems in Enterococcus Is Species-Dependent.
    Lyons C; Raustad N; Bustos MA; Shiaris M
    PLoS One; 2015; 10(11):e0143544. PubMed ID: 26600384
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Evaluation of phenotypic characteristics for differentiation of enterococcal species using an example based algorithm.
    Bejuk D; Begovac J; Gamberger D; Kucisec-Tepes N
    Diagn Microbiol Infect Dis; 2000 Dec; 38(4):201-5. PubMed ID: 11146244
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Characterization of new insertion-like sequences of Enterococcus hirae and their dissemination among clinical Enterococcus faecium isolates.
    Sechi LA; Franklin R; Duprè I; Zanetti S; Fadda G; Daneo-Moore L
    FEMS Microbiol Lett; 1998 Apr; 161(1):165-72. PubMed ID: 9561745
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Development of a Rapid Identification Method for the Differentiation of Enterococcus Species Using a Species-Specific Multiplex PCR Based on Comparative Genomics.
    Park J; Jin GD; Pak JI; Won J; Kim EB
    Curr Microbiol; 2017 Apr; 74(4):476-483. PubMed ID: 28229213
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Rapid identification of Enterococcus hirae and Enterococcus durans by PCR and detection of a homologue of the E. hirae mur-2 Gene in E. durans.
    Arias CA; Robredo B; Singh KV; Torres C; Panesso D; Murray BE
    J Clin Microbiol; 2006 Apr; 44(4):1567-70. PubMed ID: 16597896
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Rapid identification of Enterococcus durans and Enterococcus hirae by PCR with primers targeted to the ddl genes.
    Knijff E; Dellaglio F; Lombardi A; Andrighetto C; Torriani S
    J Microbiol Methods; 2001 Oct; 47(1):35-40. PubMed ID: 11566225
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Resolution of phenotypically distinct strains of Enterococcus spp. in a complex microbial community using cpn60 universal target sequencing.
    Vermette CJ; Russell AH; Desai AR; Hill JE
    Microb Ecol; 2010 Jan; 59(1):14-24. PubMed ID: 19844647
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Production of bacteriolytic enzymes as a tool for characterizing enterococci.
    Berlutti F; Thaller MC; Rossolini GM; Pantanella F; Schippa S; Pezzi R
    J Appl Bacteriol; 1996 Apr; 80(4):447-52. PubMed ID: 8849647
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Use of the manganese-dependent superoxide dismutase gene sodA for rapid identification of recently described enterococcal species.
    Frolkova P; Ghosh A; Svec P; Zurek L; Literak I
    Folia Microbiol (Praha); 2012 Sep; 57(5):439-42. PubMed ID: 22570141
    [No Abstract]   [Full Text] [Related]  

  • 97. PCR-based methods for identification of Enterococcus species.
    Drahovská H; Kocíncová D; Seman M; Turna J
    Folia Microbiol (Praha); 2002; 47(6):649-53. PubMed ID: 12630313
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Differentiation of Anaplasmataceae through partial groEL gene analysis.
    Park HS; Lee JH; Jeong EJ; Park TK; Kim TY; Chae JS; Park JH; Klein TA; Jang WJ; Park KH; Lee SH
    Microbiol Immunol; 2005; 49(7):655-62. PubMed ID: 16034209
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bis-sulfonamido-2-phenylbenzoxazoles Validate the GroES/EL Chaperone System as a Viable Antibiotic Target.
    Godek J; Sivinski J; Watson ER; Lebario F; Xu W; Stevens M; Zerio CJ; Ambrose AJ; Zhu X; Trindl CA; Zhang DD; Johnson SM; Lander GC; Chapman E
    J Am Chem Soc; 2024 Jul; 146(30):20845-20856. PubMed ID: 39041457
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Enterococcus cecorum septicemia in a malnourished adult patient.
    Greub G; Devriese LA; Pot B; Dominguez J; Bille J
    Eur J Clin Microbiol Infect Dis; 1997 Aug; 16(8):594-8. PubMed ID: 9323472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.