BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15635099)

  • 1. Tracking retrograde flow in keratocytes: news from the front.
    Vallotton P; Danuser G; Bohnet S; Meister JJ; Verkhovsky AB
    Mol Biol Cell; 2005 Mar; 16(3):1223-31. PubMed ID: 15635099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy.
    Vallotton P; Gupton SL; Waterman-Storer CM; Danuser G
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9660-5. PubMed ID: 15210979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy.
    Laurent VM; Kasas S; Yersin A; Schäffer TE; Catsicas S; Dietler G; Verkhovsky AB; Meister JJ
    Biophys J; 2005 Jul; 89(1):667-75. PubMed ID: 15849253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin.
    Jurado C; Haserick JR; Lee J
    Mol Biol Cell; 2005 Feb; 16(2):507-18. PubMed ID: 15548591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative Fluorescent Speckle Microscopy.
    Ponti A; Matov A; Adams M; Gupton S; Waterman-Storer CM; Danuser G
    Biophys J; 2005 Nov; 89(5):3456-69. PubMed ID: 16100274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia.
    Grimm HP; Verkhovsky AB; Mogilner A; Meister JJ
    Eur Biophys J; 2003 Sep; 32(6):563-77. PubMed ID: 12739072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion of fish epidermal keratocytes on spatially selective adhesion patterns.
    Csucs G; Quirin K; Danuser G
    Cell Motil Cytoskeleton; 2007 Nov; 64(11):856-67. PubMed ID: 17712861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The comings and goings of actin: coupling protrusion and retraction in cell motility.
    Small JV; Resch GP
    Curr Opin Cell Biol; 2005 Oct; 17(5):517-23. PubMed ID: 16099152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closing the loop: lamellipodia dynamics from the perspective of front propagation.
    Adler Y; Givli S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042708. PubMed ID: 24229214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin.
    Gupton SL; Anderson KL; Kole TP; Fischer RS; Ponti A; Hitchcock-DeGregori SE; Danuser G; Fowler VM; Wirtz D; Hanein D; Waterman-Storer CM
    J Cell Biol; 2005 Feb; 168(4):619-31. PubMed ID: 15716379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinction at the leading edge of the cell.
    Timpson P; Daly RJ
    Bioessays; 2005 Apr; 27(4):349-52. PubMed ID: 15770683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of lateral movement of filopodia and radial actin bundles across neuronal growth cones.
    Oldenbourg R; Katoh K; Danuser G
    Biophys J; 2000 Mar; 78(3):1176-82. PubMed ID: 10692307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact angle at the leading edge controls cell protrusion rate.
    Gabella C; Bertseva E; Bottier C; Piacentini N; Bornert A; Jeney S; Forró L; Sbalzarini IF; Meister JJ; Verkhovsky AB
    Curr Biol; 2014 May; 24(10):1126-32. PubMed ID: 24794299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protrusion and actin assembly are coupled to the organization of lamellar contractile structures.
    Lim JI; Sabouri-Ghomi M; Machacek M; Waterman CM; Danuser G
    Exp Cell Res; 2010 Aug; 316(13):2027-41. PubMed ID: 20406634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin disassembly clock determines shape and speed of lamellipodial fragments.
    Ofer N; Mogilner A; Keren K
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20394-9. PubMed ID: 22159033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.
    Nikmaneshi MR; Firoozabadi B; Saidi MS
    J Biomech; 2018 Jan; 67():37-45. PubMed ID: 29217089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin and cell movement.
    Small JV; Rohlfs A; Herzog M
    Symp Soc Exp Biol; 1993; 47():57-71. PubMed ID: 8165579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actin filament organization in the fish keratocyte lamellipodium.
    Small JV; Herzog M; Anderson K
    J Cell Biol; 1995 Jun; 129(5):1275-86. PubMed ID: 7775574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular fluid flow in rapidly moving cells.
    Keren K; Yam PT; Kinkhabwala A; Mogilner A; Theriot JA
    Nat Cell Biol; 2009 Oct; 11(10):1219-24. PubMed ID: 19767741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow.
    Alexandrova AY; Arnold K; Schaub S; Vasiliev JM; Meister JJ; Bershadsky AD; Verkhovsky AB
    PLoS One; 2008 Sep; 3(9):e3234. PubMed ID: 18800171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.