These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15635280)

  • 1. [Cytochrome P450 enzymes in biosyntheses of some plant secondary metabolites].
    Inoue K
    Yakugaku Zasshi; 2005 Jan; 125(1):31-49. PubMed ID: 15635280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase.
    Irmler S; Schröder G; St-Pierre B; Crouch NP; Hotze M; Schmidt J; Strack D; Matern U; Schröder J
    Plant J; 2000 Dec; 24(6):797-804. PubMed ID: 11135113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkaloid and iridoid glucosides from Palicourea luxurians (Rubiaceae: Palicoureeae) indicate tryptamine- and tryptophan-iridoid alkaloid formation apart the strictosidine pathway.
    Kornpointner C; Berger A; Traxler F; Hadžiabdić A; Massar M; Matek J; Brecker L; Schinnerl J
    Phytochemistry; 2020 May; 173():112296. PubMed ID: 32087436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast.
    Geerlings A; Redondo FJ; Contin A; Memelink J; van der Heijden R; Verpoorte R
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):420-4. PubMed ID: 11549013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loganin and secologanin derived tryptamine-iridoid alkaloids from Palicourea crocea and Palicourea padifolia (Rubiaceae).
    Berger A; Kostyan MK; Klose SI; Gastegger M; Lorbeer E; Brecker L; Schinnerl J
    Phytochemistry; 2015 Aug; 116():162-169. PubMed ID: 26043882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family.
    Barleben L; Panjikar S; Ruppert M; Koepke J; Stöckigt J
    Plant Cell; 2007 Sep; 19(9):2886-97. PubMed ID: 17890378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single mutations toggle the substrate selectivity of multifunctional Camptotheca secologanic acid synthases.
    Miller JC; Schuler MA
    J Biol Chem; 2022 Sep; 298(9):102237. PubMed ID: 35809640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation.
    De Luca V; Salim V; Thamm A; Masada SA; Yu F
    Curr Opin Plant Biol; 2014 Jun; 19():35-42. PubMed ID: 24709280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding.
    Goklany S; Loring RH; Glick J; Lee-Parsons CW
    Biotechnol Prog; 2009; 25(5):1289-96. PubMed ID: 19722248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis.
    Salim V; Yu F; Altarejos J; De Luca V
    Plant J; 2013 Dec; 76(5):754-65. PubMed ID: 24103035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450.
    Yamamoto H; Katano N; Ooi A; Inoue K
    Phytochemistry; 2000 Jan; 53(1):7-12. PubMed ID: 10656401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential role of two cytochrome P450s obtained from Lithospermum erythrorhizon in catalyzing the oxidation of geranylhydroquinone during Shikonin biosynthesis.
    Song W; Zhuang Y; Liu T
    Phytochemistry; 2020 Jul; 175():112375. PubMed ID: 32305685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.
    O'Connor SE
    Methods Enzymol; 2012; 515():189-206. PubMed ID: 22999175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strictosidine: from alkaloid to enzyme to gene.
    Kutchan TM
    Phytochemistry; 1993 Feb; 32(3):493-506. PubMed ID: 7763429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.
    Kidd T; Easson ML; Qu Y; De Luca V
    Phytochemistry; 2019 Mar; 159():119-126. PubMed ID: 30611871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.
    Salim V; Wiens B; Masada-Atsumi S; Yu F; De Luca V
    Phytochemistry; 2014 May; 101():23-31. PubMed ID: 24594312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Diversity of Plant Monoterpenoid Indole Alkaloids Employing Human Cytochrome P450 3A4.
    Sheludko YV; Volk J; Brandt W; Warzecha H
    Chembiochem; 2020 Jul; 21(14):1976-1980. PubMed ID: 32181956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture.
    Contin A; van der Heijden R; Lefeber AW; Verpoorte R
    FEBS Lett; 1998 Sep; 434(3):413-6. PubMed ID: 9742965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spectrophotometric assay for strictosidine synthase.
    Walton NJ; Skinner SE; Robins RJ; Rhodes MJ
    Anal Biochem; 1987 Jun; 163(2):482-8. PubMed ID: 3661997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CYP76B74 Catalyzes the 3''-Hydroxylation of Geranylhydroquinone in Shikonin Biosynthesis.
    Wang S; Wang R; Liu T; Lv C; Liang J; Kang C; Zhou L; Guo J; Cui G; Zhang Y; Werck-Reichhart D; Guo L; Huang L
    Plant Physiol; 2019 Feb; 179(2):402-414. PubMed ID: 30498024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.