These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 15635408)

  • 1. Similar response of labile and resistant soil organic matter pools to changes in temperature.
    Fang C; Smith P; Moncrieff JB; Smith JU
    Nature; 2005 Jan; 433(7021):57-9. PubMed ID: 15635408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs.
    Biasi C; Rusalimova O; Meyer H; Kaiser C; Wanek W; Barsukov P; Junger H; Richter A
    Rapid Commun Mass Spectrom; 2005; 19(11):1401-8. PubMed ID: 15880633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term sensitivity of soil carbon turnover to warming.
    Knorr W; Prentice IC; House JI; Holland EA
    Nature; 2005 Jan; 433(7023):298-301. PubMed ID: 15662420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China.
    Yang L; Pan J; Shao Y; Chen JM; Ju WM; Shi X; Yuan S
    J Environ Manage; 2007 Nov; 85(3):690-5. PubMed ID: 17107746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stability of soil organic matter pools and their turnover times calculated by delta(13)C under elevated CO(2) and two levels of N fertilisation.
    Dorodnikov M; Fangmeier A; Giesemann A; Weigel HJ; Stahr K; Kuzyakov Y
    Isotopes Environ Health Stud; 2008 Dec; 44(4):365-76. PubMed ID: 19061067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil warming and carbon-cycle feedbacks to the climate system.
    Melillo JM; Steudler PA; Aber JD; Newkirk K; Lux H; Bowles FP; Catricala C; Magill A; Ahrens T; Morrisseau S
    Science; 2002 Dec; 298(5601):2173-6. PubMed ID: 12481133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the delta13C signature related to total carbon contents and carbon decomposition rate constants in a soil profile under grassland.
    Accoe F; Boeckx P; Cleemput OV; Hofman G; Zhang Y; Li Rh; Guanxiong C
    Rapid Commun Mass Spectrom; 2002; 16(23):2184-9. PubMed ID: 12442293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature.
    Giardina CP; Ryan MG
    Nature; 2000 Apr; 404(6780):858-61. PubMed ID: 10786789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil-specific response functions of organic matter mineralization to the availability of labile carbon.
    Paterson E; Sim A
    Glob Chang Biol; 2013 May; 19(5):1562-71. PubMed ID: 23505211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-level methods for monitoring soil organic matter responses to global climate change.
    Feng X; Simpson MJ
    J Environ Monit; 2011 May; 13(5):1246-54. PubMed ID: 21416081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization.
    Lagomarsino A; Moscatelli MC; De Angelis P; Grego S
    Sci Total Environ; 2006 Dec; 372(1):256-65. PubMed ID: 17023027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil carbon and nitrogen storage in response to fire in a temperate mixed-grass savanna.
    Dai X; Boutton TW; Hailemichael M; Ansley RJ; Jessup KE
    J Environ Qual; 2006; 35(4):1620-8. PubMed ID: 16825482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.
    Wagai R; Kishimoto-Mo AW; Yonemura S; Shirato Y; Hiradate S; Yagasaki Y
    Glob Chang Biol; 2013 Apr; 19(4):1114-25. PubMed ID: 23504889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest.
    Savage KE; Parton WJ; Davidson EA; Trumbore SE; Frey SD
    Glob Chang Biol; 2013 Aug; 19(8):2389-400. PubMed ID: 23589498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming.
    Billings SA; Ballantyne F
    Glob Chang Biol; 2013 Jan; 19(1):90-102. PubMed ID: 23504723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimatization of soil respiration to warming in a tall grass prairie.
    Luo Y; Wan S; Hui D; Wallace LL
    Nature; 2001 Oct; 413(6856):622-5. PubMed ID: 11675783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon losses from all soils across England and Wales 1978-2003.
    Bellamy PH; Loveland PJ; Bradley RI; Lark RM; Kirk GJ
    Nature; 2005 Sep; 437(7056):245-8. PubMed ID: 16148931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Use of carbon isotope composition for characterization of microbial activity in arable soils].
    Ziakun AM; Dilly O
    Prikl Biokhim Mikrobiol; 2005; 41(5):582-91. PubMed ID: 16240661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of carbon accumulation in no-till soils with intensive use and cover crops in southern Brazil.
    Amado TJ; Bayer C; Conceição PC; Spagnollo E; de Campos BH; da Veiga M
    J Environ Qual; 2006; 35(4):1599-607. PubMed ID: 16825480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance.
    Conant RT; Steinweg JM; Haddix ML; Paul EA; Plante AF; Six J
    Ecology; 2008 Sep; 89(9):2384-91. PubMed ID: 18831158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.