BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15635479)

  • 21. Growth-rings of trees: their correlation with climate.
    Fritts HC
    Science; 1966 Nov; 154(3752):973-9. PubMed ID: 17752793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An improved reconstruction of May-June precipitation using tree-ring data from western Turkey and its links to volcanic eruptions.
    Köse N; Akkemik U; Güner HT; Dalfes HN; Grissino-Mayer HD; Ozeren MS; Kındap T
    Int J Biometeorol; 2013 Sep; 57(5):691-701. PubMed ID: 23015281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern northeast: a case study in Qianshan Mountains].
    Teng L; Xing-Yuan H; Zhen-Ju C
    Ying Yong Sheng Tai Xue Bao; 2014 Jul; 25(7):1841-8. PubMed ID: 25345030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism.
    Zweifel R; Zimmermann L; Zeugin F; Newbery DM
    J Exp Bot; 2006; 57(6):1445-59. PubMed ID: 16556628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna.
    Volder A; Briske DD; Tjoelker MG
    Glob Chang Biol; 2013 Mar; 19(3):843-57. PubMed ID: 23504841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drought and epidemic typhus, central Mexico, 1655-1918.
    Burns JN; Acuna-Soto R; Stahle DW
    Emerg Infect Dis; 2014 Mar; 20(3):442-7. PubMed ID: 24564928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series.
    Cufar K; De Luis M; Eckstein D; Kajfez-Bogataj L
    Int J Biometeorol; 2008 Sep; 52(7):607-15. PubMed ID: 18458962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. North Carolina climate changes reconstructed from tree rings: a.d. 372 to 1985.
    Stahle DW; Cleaveland MK; Hehr JG
    Science; 1988 Jun; 240(4858):1517-9. PubMed ID: 17798982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rainfall and drought in equatorial east Africa during the past 1,100 years.
    Verschuren D; Laird KR; Cumming BF
    Nature; 2000 Jan; 403(6768):410-4. PubMed ID: 10667789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1,500 year quantitative reconstruction of winter precipitation in the Pacific Northwest.
    Steinman BA; Abbott MB; Mann ME; Stansell ND; Finney BP
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11619-23. PubMed ID: 22753510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drivers of radial growth and carbon isotope discrimination of bur oak (Quercus macrocarpa Michx.) across continental gradients in precipitation, vapour pressure deficit and irradiance.
    Voelker SL; Meinzer FC; Lachenbruch B; Brooks JR; Guyette RP
    Plant Cell Environ; 2014 Mar; 37(3):766-79. PubMed ID: 24004466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing risk of Amazonian drought due to decreasing aerosol pollution.
    Cox PM; Harris PP; Huntingford C; Betts RA; Collins M; Jones CD; Jupp TE; Marengo JA; Nobre CA
    Nature; 2008 May; 453(7192):212-5. PubMed ID: 18464740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis.
    Evans ME; Hearn DJ; Hahn WJ; Spangle JM; Venable DL
    Evolution; 2005 Sep; 59(9):1914-27. PubMed ID: 16261729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solar forcing of drought frequency in the Maya lowlands.
    Hodell DA; Brenner M; Curtis JH; Guilderson T
    Science; 2001 May; 292(5520):1367-70. PubMed ID: 11359010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drought, epidemic disease, and the fall of classic period cultures in Mesoamerica (AD 750-950). Hemorrhagic fevers as a cause of massive population loss.
    Acuna-Soto R; Stahle DW; Therrell MD; Gomez Chavez S; Cleaveland MK
    Med Hypotheses; 2005; 65(2):405-9. PubMed ID: 15922121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tree-ring widths of Pinus tabulaeformis Carr reveal variability of winter half-year precipitation on the north-south transition zone in central China over the past 220 years.
    Peng J; Peng K; Li X; Peng M; Li J; Wei X; Liu Y; Li J
    Sci Total Environ; 2024 Jun; 931():172719. PubMed ID: 38663599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different tree-ring width sensitivities to satellite-based soil moisture from dry, moderate and wet pedunculate oak (Quercus robur L.) stands across a southeastern distribution margin.
    Kostić S; Wagner W; Orlović S; Levanič T; Zlatanov T; Goršić E; Kesić L; Matović B; Tsvetanov N; Stojanović DB
    Sci Total Environ; 2021 Dec; 800():149536. PubMed ID: 34392225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Testing three climate datasets for dendroclimatological studies of oaks in the South Carpathians.
    Nechita C; Čufar K; Macovei I; Popa I; Badea ON
    Sci Total Environ; 2019 Dec; 694():133730. PubMed ID: 31398641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tree rings as a proxy for seasonal precipitation variability and Early Neolithic settlement dynamics in Bavaria, Germany.
    Pechtl J; Land A
    PLoS One; 2019; 14(1):e0210438. PubMed ID: 30699136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate change and waterborne disease risk in the Great Lakes region of the U.S.
    Patz JA; Vavrus SJ; Uejio CK; McLellan SL
    Am J Prev Med; 2008 Nov; 35(5):451-8. PubMed ID: 18929971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.