These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15635625)

  • 1. On the mechanisms of oligopeptide reactions in solution and clay dispersion.
    Bujdák J; Rode BM
    J Pept Sci; 2004 Dec; 10(12):731-7. PubMed ID: 15635625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of complex formation in the reactions of gold(III) with Gly-Gly, Gly-L-Ala and Gly-L-His dipeptides.
    Glisić BD; Rajković S; Zivković MD; Djuran MI
    Bioorg Chem; 2010 Aug; 38(4):144-8. PubMed ID: 20359733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions.
    Rode BM; Son HL; Suwannachot Y
    Orig Life Evol Biosph; 1999 May; 29(3):273-86. PubMed ID: 10465717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide chain elongation: a possible role of montmorillonite in prebiotic synthesis of protein precursors.
    Bujdák J; Faybíková K; Eder A; Yongyai Y; Rode BM
    Orig Life Evol Biosph; 1995 Oct; 25(5):431-41. PubMed ID: 7644185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration/expansion and cation charge compensation modulate the Brønsted basicity of distorted clay water.
    Cervini-Silva J; Larson RA; Stucki JW
    Langmuir; 2006 Mar; 22(7):2961-5. PubMed ID: 16548541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic activity of hammerhead ribozymes in a clay mineral environment: implications for the RNA world.
    Biondi E; Branciamore S; Fusi L; Gago S; Gallori E
    Gene; 2007 Mar; 389(1):10-8. PubMed ID: 17125938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of lipopolysaccharide coating on clay particle wettability.
    Chen G; Zhu H
    Colloids Surf B Biointerfaces; 2004 May; 35(2):143-7. PubMed ID: 15261047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous wave MRI diffusion study of water in bentonite clay.
    Fagan AJ; Nestle N; Lurie DJ
    Magn Reson Imaging; 2005 Feb; 23(2):317-9. PubMed ID: 15833635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy.
    Tyagi B; Chudasama CD; Jasra RV
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(2):273-8. PubMed ID: 16635584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of metachromasia in cationic dyes and fluorochromes using a clay mineral: a potentially valuable model for histochemical studies.
    Stockert JC; Del Castillo P; Blázquez-Castro A
    Acta Histochem; 2011 Oct; 113(6):668-70. PubMed ID: 20674960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic investigation of interactions between dipeptides and vanadate(V) in solution.
    Durupthy O; Coupé A; Tache L; Rager MN; Maquet J; Coradin T; Steunou N; Livage J
    Inorg Chem; 2004 Mar; 43(6):2021-30. PubMed ID: 15018525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of adenine in Na-montmorillonite exposed to gamma radiation: implications to chemical evolution studies.
    Guzmán A; Negrón-Mendoza A; Ramos-Bernal S
    Cell Mol Biol (Noisy-le-grand); 2002 Jul; 48(5):525-8. PubMed ID: 12146708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide formation mechanism on montmorillonite under thermal conditions.
    Fuchida S; Masuda H; Shinoda K
    Orig Life Evol Biosph; 2014 Feb; 44(1):13-28. PubMed ID: 24917118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of the prebiotic synthesis of oligopeptides: silicate catalysts help to overcome the critical stage.
    Zamaraev KI; Romannikov VN; Salganik RI; Wlassoff WA; Khramtsov VV
    Orig Life Evol Biosph; 1997 Aug; 27(4):325-37. PubMed ID: 11536826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption kinetics and chemical forms of Cd(II) sorbed by thiol-functionalized 2:1 clay minerals.
    Malferrari D; Brigatti MF; Laurora A; Pini S; Medici L
    J Hazard Mater; 2007 May; 143(1-2):73-81. PubMed ID: 17030421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.
    Garai A; Nandi AK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1842-51. PubMed ID: 18572585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of degradation and oil solubility of ester prodrugs of a model dipeptide (Gly-Phe).
    Larsen SW; Ankersen M; Larsen C
    Eur J Pharm Sci; 2004 Aug; 22(5):399-408. PubMed ID: 15265509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidolysis of a lignin model: investigation of heterogeneous catalysis using Montmorillonite clay.
    Bouxin F; Baumberger S; Pollet B; Haudrechy A; Renault JH; Dole P
    Bioresour Technol; 2010 Jan; 101(2):736-44. PubMed ID: 19747820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of peptides synthesized in the presence of SAz-1 montmorillonite and Cu(2+) exchanged hectorite.
    Porter TL; Eastman MP; Bain E; Begay S
    Biophys Chem; 2001 Jul; 91(2):115-24. PubMed ID: 11429201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.
    Jung Y; Son YH; Lee JK; Phuoc TX; Soong Y; Chyu MK
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3515-22. PubMed ID: 21888313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.