BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15635666)

  • 1. Contribution of the functional dyad of animal toxins acting on voltage-gated Kv1-type channels.
    Mouhat S; De Waard M; Sabatier JM
    J Pept Sci; 2005 Feb; 11(2):65-8. PubMed ID: 15635666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 'functional' dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels.
    Mouhat S; Mosbah A; Visan V; Wulff H; Delepierre M; Darbon H; Grissmer S; De Waard M; Sabatier JM
    Biochem J; 2004 Jan; 377(Pt 1):25-36. PubMed ID: 12962541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxin determinants required for interaction with voltage-gated K+ channels.
    Jouirou B; Mouhat S; Andreotti N; De Waard M; Sabatier JM
    Toxicon; 2004 Jun; 43(8):909-14. PubMed ID: 15208024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anuroctoxin, a new scorpion toxin of the alpha-KTx 6 subfamily, is highly selective for Kv1.3 over IKCa1 ion channels of human T lymphocytes.
    Bagdány M; Batista CV; Valdez-Cruz NA; Somodi S; Rodriguez de la Vega RC; Licea AF; Varga Z; Gáspár R; Possani LD; Panyi G
    Mol Pharmacol; 2005 Apr; 67(4):1034-44. PubMed ID: 15615696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KappaM-conotoxin RIIIK, structural and functional novelty in a K+ channel antagonist.
    Al-Sabi A; Lennartz D; Ferber M; Gulyas J; Rivier JE; Olivera BM; Carlomagno T; Terlau H
    Biochemistry; 2004 Jul; 43(27):8625-35. PubMed ID: 15236570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a mammalian target of kappaM-conotoxin RIIIK.
    Ferber M; Al-Sabi A; Stocker M; Olivera BM; Terlau H
    Toxicon; 2004 Jun; 43(8):915-21. PubMed ID: 15208025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacology of voltage-gated and calcium-activated potassium channels.
    Kaczorowski GJ; Garcia ML
    Curr Opin Chem Biol; 1999 Aug; 3(4):448-58. PubMed ID: 10419851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels.
    Gu C; Jan YN; Jan LY
    Science; 2003 Aug; 301(5633):646-9. PubMed ID: 12893943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel alpha-KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore.
    Giangiacomo KM; Becker J; Garsky C; Schmalhofer W; Garcia ML; Mullmann TJ
    Cell Biochem Biophys; 2008; 52(1):47-58. PubMed ID: 18815746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of various K+ channel blockers on spontaneous glycine release at rat spinal neurons.
    Shoudai K; Nonaka K; Maeda M; Wang ZM; Jeong HJ; Higashi H; Murayama N; Akaike N
    Brain Res; 2007 Jul; 1157():11-22. PubMed ID: 17555723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assignment of voltage-gated potassium channel blocking activity to kappa-KTx1.3, a non-toxic homologue of kappa-hefutoxin-1, from Heterometrus spinifer venom.
    Nirthanan S; Pil J; Abdel-Mottaleb Y; Sugahara Y; Gopalakrishnakone P; Joseph JS; Sato K; Tytgat J
    Biochem Pharmacol; 2005 Feb; 69(4):669-78. PubMed ID: 15670585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the human voltage-gated potassium channel gene, KCNA7, a candidate gene for inherited cardiac disorders, and its exclusion as cause of progressive familial heart block I (PFHBI).
    Bardien-Kruger S; Wulff H; Arieff Z; Brink P; Chandy KG; Corfield V
    Eur J Hum Genet; 2002 Jan; 10(1):36-43. PubMed ID: 11896454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification.
    Fedida D; Zhang S; Kwan DC; Eduljee C; Kehl SJ
    Cell Biochem Biophys; 2005; 43(2):231-42. PubMed ID: 16049348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes.
    Bosmans F; Rash L; Zhu S; Diochot S; Lazdunski M; Escoubas P; Tytgat J
    Mol Pharmacol; 2006 Feb; 69(2):419-29. PubMed ID: 16267209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of voltage-gated potassium channels to the regulation of apoptosis.
    Szabò I; Zoratti M; Gulbins E
    FEBS Lett; 2010 May; 584(10):2049-56. PubMed ID: 20102714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of folds in animal toxins acting on ion channels.
    Mouhat S; Jouirou B; Mosbah A; De Waard M; Sabatier JM
    Biochem J; 2004 Mar; 378(Pt 3):717-26. PubMed ID: 14674883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel.
    Yu K; Fu W; Liu H; Luo X; Chen KX; Ding J; Shen J; Jiang H
    Biophys J; 2004 Jun; 86(6):3542-55. PubMed ID: 15189853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement.
    Chanda B; Asamoah OK; Blunck R; Roux B; Bezanilla F
    Nature; 2005 Aug; 436(7052):852-6. PubMed ID: 16094369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatics of the intracellular vestibule of K+ channels.
    Jogini V; Roux B
    J Mol Biol; 2005 Nov; 354(2):272-88. PubMed ID: 16242718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.