These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Forensic analysis of architectural finishes using fourier transform infrared and Raman spectroscopy, part I: the resin bases. Bell SE; Fido LA; Speers SJ; Armstrong WJ; Spratt S Appl Spectrosc; 2005 Nov; 59(11):1333-9. PubMed ID: 16316510 [TBL] [Abstract][Full Text] [Related]
3. Forensic analysis of architectural finishes using fourier transform infrared and Raman spectroscopy, part II: white paint. Bell SE; Fido LA; Speers SJ; Armstrong WJ; Spratt S Appl Spectrosc; 2005 Nov; 59(11):1340-6. PubMed ID: 16316511 [TBL] [Abstract][Full Text] [Related]
4. Use of linear discriminant analysis applied to vibrational spectroscopy data to characterize commercial varnishes employed for art purposes. Peris-Vicente J; Lerma-García MJ; Simó-Alfonso E; Gimeno-Adelantado JV; Doménech-Carbó MT Anal Chim Acta; 2007 Apr; 589(2):208-15. PubMed ID: 17418183 [TBL] [Abstract][Full Text] [Related]
5. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Cappitelli F; Principi P; Pedrazzani R; Toniolo L; Sorlini C Sci Total Environ; 2007 Oct; 385(1-3):172-81. PubMed ID: 17658586 [TBL] [Abstract][Full Text] [Related]
6. Preliminary study of UV ageing process of proteinaceous paint binder by FT-IR and principal component analysis. Manzano E; Navas N; Checa-Moreno R; Rodriguez-Simón L; Capitán-Vallvey LF Talanta; 2009 Mar; 77(5):1724-31. PubMed ID: 19159789 [TBL] [Abstract][Full Text] [Related]
7. [A comparative characterization of fungal melanin and the humin-like substances synthesized by Cerrena maxima 0275]. Koroleva OV; Kulikova NA; Alekseeva TN; Stepanova EV; Davidchik VN; Beliaeva EIu; Tsvetkova EA Prikl Biokhim Mikrobiol; 2007; 43(1):69-76. PubMed ID: 17345862 [TBL] [Abstract][Full Text] [Related]
8. Pigment analyses of a portrait and paint box of Turkish artist Feyhaman Duran (1886-1970): the EDXRF, FT-IR and micro Raman spectroscopic studies. Akyuz S; Akyuz T; Emre G; Gulec A; Basaran S Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():74-81. PubMed ID: 22245940 [TBL] [Abstract][Full Text] [Related]
9. Impact of biological factors on binding media identification in art objects: identification of animal glue in the presence of Aspergillus niger. Tsakalof AK; Bairachtari KA; Aslani IS; Chryssoulakis ID; Kolisis FN J Sep Sci; 2004 Feb; 27(3):167-73. PubMed ID: 15334904 [TBL] [Abstract][Full Text] [Related]
10. Measurement of protein biomass by Fourier transform infrared-photoacoustic spectroscopy. Gordon SH; Greene RV; Freer SN; James C Biotechnol Appl Biochem; 1990 Feb; 12(1):1-10. PubMed ID: 2178631 [TBL] [Abstract][Full Text] [Related]
11. ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials. Hayes PA; Vahur S; Leito I Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():207-13. PubMed ID: 24945861 [TBL] [Abstract][Full Text] [Related]
12. FT-IR, FT-Raman vibrational spectra and molecular structure investigation of 2-chloro-4-methylaniline: a combined experimental and theoretical study. Karabacak M; Karagöz D; Kurt M Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jun; 72(5):1076-83. PubMed ID: 19213598 [TBL] [Abstract][Full Text] [Related]
13. FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of p-chlorobenzoic acid. Sundaraganesan N; Anand B; Meganathan C; Joshua BD Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):871-9. PubMed ID: 17658292 [TBL] [Abstract][Full Text] [Related]
14. Preparation of a biodegradable oil absorber and its biodegradation. Yoo SY; Daud WM; Lee MG Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):283-8. PubMed ID: 21909668 [TBL] [Abstract][Full Text] [Related]
15. ATR-FT-IR spectroscopy in the region of 550-230 cm(-1) for identification of inorganic pigments. Vahur S; Teearu A; Leito I Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):1061-72. PubMed ID: 20061180 [TBL] [Abstract][Full Text] [Related]
16. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Smidt E; Meissl K Waste Manag; 2007; 27(2):268-76. PubMed ID: 16530397 [TBL] [Abstract][Full Text] [Related]
17. Fourier Transform-Raman spectroscopic study of natural resins of archaeological interest. Brody RH; Edwards HG; Pollard AM Biopolymers; 2002; 67(2):129-41. PubMed ID: 12073935 [TBL] [Abstract][Full Text] [Related]
18. FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of 2,3-difluoro phenol. Sundaraganesan N; Anand B; Meganathan C; Joshua BD Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):561-6. PubMed ID: 17324616 [TBL] [Abstract][Full Text] [Related]
19. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies. Ropret P; Centeno SA; Bukovec P Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):486-97. PubMed ID: 17590389 [TBL] [Abstract][Full Text] [Related]
20. Simulation of IR and Raman spectra of p-hydroxyanisole and p-nitroanisole based on scaled DFT force fields and their vibrational assignments. Krishnakumar V; Prabavathi N Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):154-61. PubMed ID: 19523872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]