These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 15636744)
1. A conserved polar region in the cell division site determinant MinD is required for responding to MinE-induced oscillation but not for localization within coiled arrays. Szeto J; Eng NF; Acharya S; Rigden MD; Dillon JA Res Microbiol; 2005; 156(1):17-29. PubMed ID: 15636744 [TBL] [Abstract][Full Text] [Related]
2. The C-terminus of MinE from Neisseria gonorrhoeae acts as a topological specificity factor by modulating MinD activity in bacterial cell division. Eng NF; Szeto J; Acharya S; Tessier D; Dillon JA Res Microbiol; 2006 May; 157(4):333-44. PubMed ID: 16376524 [TBL] [Abstract][Full Text] [Related]
3. The N terminus of MinD contains determinants which affect its dynamic localization and enzymatic activity. Szeto J; Acharya S; Eng NF; Dillon JA J Bacteriol; 2004 Nov; 186(21):7175-85. PubMed ID: 15489428 [TBL] [Abstract][Full Text] [Related]
4. Conformation of the cell division regulator MinE: evidence for interactions between the topological specificity and anti-MinCD domains. Ramos D; Ducat T; Cheng J; Eng NF; Dillon JA; Goto NK Biochemistry; 2006 Apr; 45(14):4593-601. PubMed ID: 16584194 [TBL] [Abstract][Full Text] [Related]
5. N terminus determinants of MinC from Neisseria gonorrhoeae mediate interaction with FtsZ but do not affect interaction with MinD or homodimerization. Greco-Stewart V; Ramirez-Arcos S; Liao M; Dillon JR Arch Microbiol; 2007 Jun; 187(6):451-8. PubMed ID: 17287984 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for the topological specificity function of MinE. King GF; Shih YL; Maciejewski MW; Bains NP; Pan B; Rowland SL; Mullen GP; Rothfield LI Nat Struct Biol; 2000 Nov; 7(11):1013-7. PubMed ID: 11062554 [TBL] [Abstract][Full Text] [Related]
7. Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection. Ma L; King GF; Rothfield L Mol Microbiol; 2004 Oct; 54(1):99-108. PubMed ID: 15458408 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850 [TBL] [Abstract][Full Text] [Related]
9. Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. Shih YL; Fu X; King GF; Le T; Rothfield L EMBO J; 2002 Jul; 21(13):3347-57. PubMed ID: 12093736 [TBL] [Abstract][Full Text] [Related]
10. Gonococcal MinD affects cell division in Neisseria gonorrhoeae and Escherichia coli and exhibits a novel self-interaction. Szeto J; Ramirez-Arcos S; Raymond C; Hicks LD; Kay CM; Dillon JA J Bacteriol; 2001 Nov; 183(21):6253-64. PubMed ID: 11591668 [TBL] [Abstract][Full Text] [Related]
11. Analysis of MinD mutations reveals residues required for MinE stimulation of the MinD ATPase and residues required for MinC interaction. Zhou H; Schulze R; Cox S; Saez C; Hu Z; Lutkenhaus J J Bacteriol; 2005 Jan; 187(2):629-38. PubMed ID: 15629934 [TBL] [Abstract][Full Text] [Related]
12. MinC N- and C-Domain Interactions Modulate FtsZ Assembly, Division Site Selection, and MinD-Dependent Oscillation in LaBreck CJ; Conti J; Viola MG; Camberg JL J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455283 [TBL] [Abstract][Full Text] [Related]
13. Conservation of dynamic localization among MinD and MinE orthologues: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli. Ramirez-Arcos S; Szeto J; Dillon JA; Margolin W Mol Microbiol; 2002 Oct; 46(2):493-504. PubMed ID: 12406224 [TBL] [Abstract][Full Text] [Related]
14. Dissecting the role of conformational change and membrane binding by the bacterial cell division regulator MinE in the stimulation of MinD ATPase activity. Ayed SH; Cloutier AD; McLeod LJ; Foo ACY; Damry AM; Goto NK J Biol Chem; 2017 Dec; 292(50):20732-20743. PubMed ID: 29066619 [TBL] [Abstract][Full Text] [Related]
15. The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide. Conti J; Viola MG; Camberg JL FEBS Lett; 2015 Jan; 589(2):201-6. PubMed ID: 25497011 [TBL] [Abstract][Full Text] [Related]
16. Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE. Ghasriani H; Ducat T; Hart CT; Hafizi F; Chang N; Al-Baldawi A; Ayed SH; Lundström P; Dillon JA; Goto NK Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18416-21. PubMed ID: 20937912 [TBL] [Abstract][Full Text] [Related]
17. Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy. Meacci G; Ries J; Fischer-Friedrich E; Kahya N; Schwille P; Kruse K Phys Biol; 2006 Nov; 3(4):255-63. PubMed ID: 17200601 [TBL] [Abstract][Full Text] [Related]
18. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Hu Z; Lutkenhaus J Mol Microbiol; 1999 Oct; 34(1):82-90. PubMed ID: 10540287 [TBL] [Abstract][Full Text] [Related]
19. Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. Hale CA; Meinhardt H; de Boer PA EMBO J; 2001 Apr; 20(7):1563-72. PubMed ID: 11285221 [TBL] [Abstract][Full Text] [Related]
20. Role of the ATP-binding site of SopA protein in partition of the F plasmid. Libante V; Thion L; Lane D J Mol Biol; 2001 Nov; 314(3):387-99. PubMed ID: 11846553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]