BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15636751)

  • 1. Optimisation of growth conditions for continuous culture of the hyperthermophilic archaeon Thermococcus hydrothermalis and development of sulphur-free defined and minimal media.
    Postec A; Pignet P; Cueff-Gauchard V; Schmitt A; Querellou J; Godfroy A
    Res Microbiol; 2005; 156(1):82-7. PubMed ID: 15636751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1.
    Kanai T; Imanaka H; Nakajima A; Uwamori K; Omori Y; Fukui T; Atomi H; Imanaka T
    J Biotechnol; 2005 Mar; 116(3):271-82. PubMed ID: 15707688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon Pyrococcus abyssi ST549.
    Godfroy A; Raven ND; Sharp RJ
    FEMS Microbiol Lett; 2000 May; 186(1):127-32. PubMed ID: 10779724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids.
    Dirmeier R; Keller M; Hafenbradl D; Braun FJ; Rachel R; Burggraf S; Stetter KO
    Extremophiles; 1998 May; 2(2):109-14. PubMed ID: 9672685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis: the binding of trehalose and maltose results in different protein conformational states.
    Herman P; Staiano M; Marabotti A; Varriale A; Scirè A; Tanfani F; Vecer J; Rossi M; D'Auria S
    Proteins; 2006 Jun; 63(4):754-67. PubMed ID: 16532450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth Physiology of the Hyperthermophilic Archaeon Thermococcus litoralis: Development of a Sulfur-Free Defined Medium, Characterization of an Exopolysaccharide, and Evidence of Biofilm Formation.
    Rinker KD; Kelly RM
    Appl Environ Microbiol; 1996 Dec; 62(12):4478-85. PubMed ID: 16535464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima.
    Rinker KD; Kelly RM
    Biotechnol Bioeng; 2000 Sep; 69(5):537-47. PubMed ID: 10898863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.
    Cario A; Lormières F; Xiang X; Oger P
    Res Microbiol; 2015 Nov; 166(9):710-6. PubMed ID: 26226334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media.
    Genzel Y; Olmer RM; Schäfer B; Reichl U
    Vaccine; 2006 Aug; 24(35-36):6074-87. PubMed ID: 16781022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions.
    Rourou S; van der Ark A; van der Velden T; Kallel H
    Vaccine; 2007 May; 25(19):3879-89. PubMed ID: 17307281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1.
    Lim JK; Lee HS; Kim YJ; Bae SS; Jeon JH; Kang SG; Lee JH
    J Microbiol Biotechnol; 2007 Aug; 17(8):1242-8. PubMed ID: 18051591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure effects on the structure and stability of the hyperthermophilic trehalose/maltose-binding protein from Thermococcus litoralis.
    Marchal S; Staiano M; Marabotti A; Vitale A; Varriale A; Lange R; D'Auria S
    J Phys Chem B; 2009 Sep; 113(38):12804-8. PubMed ID: 19711955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in an adenine-supplemented chemically defined medium.
    Torino MI; Hébert EM; Mozzi F; Font de Valdez G
    J Appl Microbiol; 2005; 99(5):1123-9. PubMed ID: 16238742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous culture of Methanococcus maripaludis under defined nutrient conditions.
    Haydock AK; Porat I; Whitman WB; Leigh JA
    FEMS Microbiol Lett; 2004 Sep; 238(1):85-91. PubMed ID: 15336407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermococcus profundus 2-ketoisovalerate ferredoxin oxidoreductase, a key enzyme in the archaeal energy-producing amino acid metabolic pathway.
    Ozawa Y; Nakamura T; Kamata N; Yasujima D; Urushiyama A; Yamakura F; Ohmori D; Imai T
    J Biochem; 2005 Jan; 137(1):101-7. PubMed ID: 15713889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Matsumi R; Atomi H; Imanaka T
    J Bacteriol; 2005 Oct; 187(20):7072-80. PubMed ID: 16199578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing bio-hydrogen production from sodium formate by hyperthermophilic archaeon, Thermococcus onnurineus NA1.
    Bae SS; Lee HS; Jeon JH; Lee JH; Kang SG; Kim TW
    Bioprocess Biosyst Eng; 2015 May; 38(5):989-93. PubMed ID: 25537236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of micronutrients on growth and starch hydrolysis of Thermococcus guaymasensis and Thermococcus aggregans.
    Canganella F; Kato C; Horikoshi K
    Microbiol Res; 2000 Mar; 154(4):307-12. PubMed ID: 10772152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea.
    Kim HO; Lim JM; Joo JH; Kim SW; Hwang HJ; Choi JW; Yun JW
    Bioresour Technol; 2005 Jul; 96(10):1175-82. PubMed ID: 15683909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of keratin-containing biowaste to produce biohydrogen.
    Bálint B; Bagi Z; Tóth A; Rákhely G; Perei K; Kovács KL
    Appl Microbiol Biotechnol; 2005 Dec; 69(4):404-10. PubMed ID: 15856225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.