These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 156368)
1. Cardiac energy stores and creatine in experimental cardiac hypertrophy. Reilly PJ; Cooksey JD Proc Soc Exp Biol Med; 1979 Jun; 161(2):193-8. PubMed ID: 156368 [No Abstract] [Full Text] [Related]
2. Cardiac hypertrophy and heart failure: dynamics of changes in high-energy phosphate compounds, glycogen and lactic acid. Fizel A; Fizelova A J Mol Cell Cardiol; 1971 Aug; 2(3):187-92. PubMed ID: 4256075 [No Abstract] [Full Text] [Related]
3. Depressed high-energy phosphate content in hypertrophied ventricles of animal and man: the biologic basis for increased sensitivity to ischemic injury. Peyton RB; Jones RN; Attarian D; Sink JD; Van Trigt P; Currie WD; Wechsler AS Ann Surg; 1982 Sep; 196(3):278-84. PubMed ID: 6214220 [TBL] [Abstract][Full Text] [Related]
4. The cytoplasmic free energy of ATP hydrolysis in isolated rod-shaped rat ventricular myocytes. ter Welle HF; Baartscheer A; Fiolet JW; Schumacher CA J Mol Cell Cardiol; 1988 May; 20(5):435-41. PubMed ID: 3210251 [TBL] [Abstract][Full Text] [Related]
5. Energy metabolism response to calcium activation in isolated rat hearts during development and regression of T3-induced hypertrophy. Lortet S; Heckmann M; Ray A; Rossi A; Aussedat J; Grably S; Zimmer HG Mol Cell Biochem; 1995 Oct; 151(2):99-106. PubMed ID: 8569765 [TBL] [Abstract][Full Text] [Related]
6. [Chronic hypoxia and cardiac hypertrophy. Experimental study. Preliminary report]. Moret PR; Duchosal F Schweiz Med Wochenschr; 1973 Dec; 103(50):1796-7. PubMed ID: 4272135 [No Abstract] [Full Text] [Related]
8. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485 [TBL] [Abstract][Full Text] [Related]
9. Nucleotides and organophosphates of cardiac, fast and slow muscles of chick during development. Radha E; Krishnamoorthy RV Comp Biochem Physiol B; 1973 Aug; 45(4):847-65. PubMed ID: 4269549 [No Abstract] [Full Text] [Related]
10. Subcellular distribution of phosphagens in isolated perfused rat heart. Kauppinen RA; Hiltunen JK; Hassinen IE FEBS Lett; 1980 Apr; 112(2):273-6. PubMed ID: 7371865 [No Abstract] [Full Text] [Related]
11. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol]. Krautzberger W; Kammermeier H; Kammermeier B Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286 [No Abstract] [Full Text] [Related]
12. Age-dependent changes in cardiac muscle metabolism upon replacement of creatine by beta- guanidinopropionic acid. Field ML; Unitt JF; Radda GK; Henderson C; Seymour AM Biochem Soc Trans; 1991 Apr; 19(2):208S. PubMed ID: 1889584 [No Abstract] [Full Text] [Related]
13. Perfusate cations and contracture and Ca, Cr, PCr, and ATP in rabbit myocardium. Lee YC; Visscher MB Am J Physiol; 1970 Dec; 219(6):1637-41. PubMed ID: 5485680 [No Abstract] [Full Text] [Related]
14. Myocardial energy metabolism in the hypertrophied hearts of spontaneously hypertensive rats. Shimamoto N; Goto N; Tanabe M; Imamoto T; Fujiwara S; Hirata M Basic Res Cardiol; 1982; 77(4):359-7. PubMed ID: 6216880 [TBL] [Abstract][Full Text] [Related]
15. [Relationship between the strength of myocardial fiber contraction of frog heart ventricle and processes of intracellular energy transport]. Rozenshtraukh LV; Saks VA; Undrovinas AI; Iushmanova AV; Smirnov VN Fiziol Zh SSSR Im I M Sechenova; 1976 Aug; 62(8):1199-1209. PubMed ID: 1086803 [TBL] [Abstract][Full Text] [Related]
16. Changes in high-energy phosphate compounds of isolated rat hearts during Ca2+-free perfusion and reperfusion with Ca2+. Bionk AB; Ruigrok TJ; Maas AH; Zimmerman AN J Mol Cell Cardiol; 1976 Dec; 8(12):973-9. PubMed ID: 1018328 [No Abstract] [Full Text] [Related]
17. [Development of current concepts on the mechanism of heart hypertrophy]. Meerson FZ Kardiologiia; 1972 Apr; 12(4):5-12. PubMed ID: 4261524 [No Abstract] [Full Text] [Related]
18. Creatine deficiency and heart failure. Del Franco A; Ambrosio G; Baroncelli L; Pizzorusso T; Barison A; Olivotto I; Recchia FA; Lombardi CM; Metra M; Ferrari Chen YF; Passino C; Emdin M; Vergaro G Heart Fail Rev; 2022 Sep; 27(5):1605-1616. PubMed ID: 34618287 [TBL] [Abstract][Full Text] [Related]
19. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460 [TBL] [Abstract][Full Text] [Related]
20. In vivo profile of myocardial energy metabolism of pressure-overloaded rat. Takeo S; Tanonaka K; Aoki M; Nakai Y; Sanbe A; Shizume Y; Tanaka C; Miyake K; Hirai K; Ueda N Jpn Heart J; 1993 May; 34(3):313-31. PubMed ID: 8411637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]