These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1229 related articles for article (PubMed ID: 15637297)
1. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Kinugawa S; Huang H; Wang Z; Kaminski PM; Wolin MS; Hintze TH Circ Res; 2005 Feb; 96(3):355-62. PubMed ID: 15637297 [TBL] [Abstract][Full Text] [Related]
2. Role of neuronal NO synthase in regulating vascular superoxide levels and mitogen-activated protein kinase phosphorylation. Zhang GX; Kimura S; Murao K; Shimizu J; Matsuyoshi H; Takaki M Cardiovasc Res; 2009 Feb; 81(2):389-99. PubMed ID: 18987049 [TBL] [Abstract][Full Text] [Related]
3. Normal vascular development in mice deficient in endothelial NO synthase: possible role of neuronal NO synthase. Al-Shabrawey M; El-Remessy A; Gu X; Brooks SS; Hamed MS; Huang P; Caldwell RB Mol Vis; 2003 Oct; 9():549-58. PubMed ID: 14551528 [TBL] [Abstract][Full Text] [Related]
4. Vascular neuronal NO synthase is selectively upregulated by platelet-derived growth factor: involvement of the MEK/ERK pathway. Nakata S; Tsutsui M; Shimokawa H; Tamura M; Tasaki H; Morishita T; Suda O; Ueno S; Toyohira Y; Nakashima Y; Yanagihara N Arterioscler Thromb Vasc Biol; 2005 Dec; 25(12):2502-8. PubMed ID: 16224055 [TBL] [Abstract][Full Text] [Related]
5. Distinct roles of nitric oxide synthases and interstitial cells of Cajal in rectoanal relaxation. Terauchi A; Kobayashi D; Mashimo H Am J Physiol Gastrointest Liver Physiol; 2005 Aug; 289(2):G291-9. PubMed ID: 15845873 [TBL] [Abstract][Full Text] [Related]
6. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Ichinose F; Buys ES; Neilan TG; Furutani EM; Morgan JG; Jassal DS; Graveline AR; Searles RJ; Lim CC; Kaneki M; Picard MH; Scherrer-Crosbie M; Janssens S; Liao R; Bloch KD Circ Res; 2007 Jan; 100(1):130-9. PubMed ID: 17138944 [TBL] [Abstract][Full Text] [Related]
7. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Luo JD; Wang YY; Fu WL; Wu J; Chen AF Circulation; 2004 Oct; 110(16):2484-93. PubMed ID: 15262829 [TBL] [Abstract][Full Text] [Related]
9. Co-expression and modulation of neuronal and endothelial nitric oxide synthase in human endothelial cells. Bachetti T; Comini L; Curello S; Bastianon D; Palmieri M; Bresciani G; Callea F; Ferrari R J Mol Cell Cardiol; 2004 Nov; 37(5):939-45. PubMed ID: 15522271 [TBL] [Abstract][Full Text] [Related]
10. NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption by NO in old Fischer 344 rats. Adler A; Messina E; Sherman B; Wang Z; Huang H; Linke A; Hintze TH Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1015-22. PubMed ID: 12915388 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779 [TBL] [Abstract][Full Text] [Related]
12. Effects of ethanol on neutrophil recruitment and lung host defense in nitric oxide synthase I and nitric oxide synthase II knockout mice. Greenberg SS; Ouyang J; Zhao X; Parrish C; Nelson S; Giles TD Alcohol Clin Exp Res; 1999 Sep; 23(9):1435-45. PubMed ID: 10512307 [TBL] [Abstract][Full Text] [Related]
13. Control of myocardial oxygen consumption in transgenic mice overexpressing vascular eNOS. Walsh EK; Huang H; Wang Z; Williams J; de Crom R; van Haperen R; Thompson CI; Lefer DJ; Hintze TH Am J Physiol Heart Circ Physiol; 2004 Nov; 287(5):H2115-21. PubMed ID: 15284070 [TBL] [Abstract][Full Text] [Related]
14. Coronary microvascular endothelial stunning after acute pressure overload in the conscious dog is caused by oxidant processes: the role of angiotensin II type 1 receptor and NAD(P)H oxidase. Kinugawa S; Post H; Kaminski PM; Zhang X; Xu X; Huang H; Recchia FA; Ochoa M; Wolin MS; Kaley G; Hintze TH Circulation; 2003 Dec; 108(23):2934-40. PubMed ID: 14656912 [TBL] [Abstract][Full Text] [Related]
15. Metalloendopeptidase inhibition regulates phosphorylation of p38-mitogen-activated protein kinase and nitric oxide synthase in heart after endotoxemia. Gupta A; Sharma AC Shock; 2003 Oct; 20(4):375-81. PubMed ID: 14501953 [TBL] [Abstract][Full Text] [Related]
16. gp91phox-containing NAD(P)H oxidase mediates attenuation of nitric oxide-dependent control of myocardial oxygen consumption by ANG II. Kinugawa S; Zhang J; Messina E; Walsh E; Huang H; Kaminski PM; Wolin MS; Hintze TH Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H862-7. PubMed ID: 15778277 [TBL] [Abstract][Full Text] [Related]
17. eNOS, nNOS, cGMP and protein kinase G mediate the inhibitory effect of pancreastatin, a chromogranin A-derived peptide, on growth and proliferation of hepatoma cells. Díaz-Troya S; Najib S; Sánchez-Margalet V Regul Pept; 2005 Feb; 125(1-3):41-6. PubMed ID: 15582712 [TBL] [Abstract][Full Text] [Related]