BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 15637347)

  • 1. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension.
    Gamba G
    Am J Physiol Renal Physiol; 2005 Feb; 288(2):F245-52. PubMed ID: 15637347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
    Yang CL; Angell J; Mitchell R; Ellison DH
    J Clin Invest; 2003 Apr; 111(7):1039-45. PubMed ID: 12671053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction.
    Ohta A; Schumacher FR; Mehellou Y; Johnson C; Knebel A; Macartney TJ; Wood NT; Alessi DR; Kurz T
    Biochem J; 2013 Apr; 451(1):111-22. PubMed ID: 23387299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WNK kinases and the control of blood pressure.
    Cope G; Golbang A; O'Shaughnessy KM
    Pharmacol Ther; 2005 May; 106(2):221-31. PubMed ID: 15866321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of with-no-lysine [K] kinases in the pathogenesis of Gordon's syndrome.
    Xie J; Craig L; Cobb MH; Huang CL
    Pediatr Nephrol; 2006 Sep; 21(9):1231-6. PubMed ID: 16683163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WNK kinases regulate sodium chloride and potassium transport by the aldosterone-sensitive distal nephron.
    Subramanya AR; Yang CL; McCormick JA; Ellison DH
    Kidney Int; 2006 Aug; 70(4):630-4. PubMed ID: 16820787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [WNK1 and WNK4, new players in salt and water homeostasis].
    Hadchouel J; Delaloy C; Jeunemaitre X
    Med Sci (Paris); 2005 Jan; 21(1):55-60. PubMed ID: 15639021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases.
    Hadchouel J; Ellison DH; Gamba G
    Annu Rev Physiol; 2016; 78():367-89. PubMed ID: 26863326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of type I and type II pseudohypoaldosteronism.
    Furgeson SB; Linas S
    J Am Soc Nephrol; 2010 Nov; 21(11):1842-5. PubMed ID: 20829405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WNK kinases, renal ion transport and hypertension.
    San-Cristobal P; de los Heros P; Ponce-Coria J; Moreno E; Gamba G
    Am J Nephrol; 2008; 28(5):860-70. PubMed ID: 18547946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WNK kinases and essential hypertension.
    Huang CL; Kuo E; Toto RD
    Curr Opin Nephrol Hypertens; 2008 Mar; 17(2):133-7. PubMed ID: 18277144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia.
    Kahle KT; Gimenez I; Hassan H; Wilson FH; Wong RD; Forbush B; Aronson PS; Lifton RP
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2064-9. PubMed ID: 14769928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice.
    Susa K; Sohara E; Rai T; Zeniya M; Mori Y; Mori T; Chiga M; Nomura N; Nishida H; Takahashi D; Isobe K; Inoue Y; Takeishi K; Takeda N; Sasaki S; Uchida S
    Hum Mol Genet; 2014 Oct; 23(19):5052-60. PubMed ID: 24821705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved.
    Golbang AP; Cope G; Hamad A; Murthy M; Liu CH; Cuthbert AW; O'shaughnessy KM
    Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1369-76. PubMed ID: 16788137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4.
    Wilson FH; Kahle KT; Sabath E; Lalioti MD; Rapson AK; Hoover RS; Hebert SC; Gamba G; Lifton RP
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):680-4. PubMed ID: 12515852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of disease: WNK-ing at the mechanism of salt-sensitive hypertension.
    Huang CL; Kuo E
    Nat Clin Pract Nephrol; 2007 Nov; 3(11):623-30. PubMed ID: 17957199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis.
    López-Cayuqueo KI; Chavez-Canales M; Pillot A; Houillier P; Jayat M; Baraka-Vidot J; Trepiccione F; Baudrie V; Büsst C; Soukaseum C; Kumai Y; Jeunemaître X; Hadchouel J; Eladari D; Chambrey R
    Kidney Int; 2018 Sep; 94(3):514-523. PubMed ID: 30146013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WNK kinases influence TRPV4 channel function and localization.
    Fu Y; Subramanya A; Rozansky D; Cohen DM
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1305-14. PubMed ID: 16403833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch.
    Kahle KT; Wilson FH; Lifton RP
    Trends Endocrinol Metab; 2005 Apr; 16(3):98-103. PubMed ID: 15808806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex.
    Yang CL; Zhu X; Ellison DH
    J Clin Invest; 2007 Nov; 117(11):3403-11. PubMed ID: 17975670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.