BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 15637439)

  • 1. Wavelet analysis of cutaneous blood flow in melanocytic skin lesions.
    Häfner HM; Bräuer K; Eichner M; Steins A; Möhrle M; Blum A; Jünger M
    J Vasc Res; 2005; 42(1):38-46. PubMed ID: 15637439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelet analysis of skin perfusion in healthy volunteers.
    Häfner HM; Bräuer K; Eichner M; Koch I; Heinle H; Röcken M; Strölin A
    Microcirculation; 2007 Feb; 14(2):137-44. PubMed ID: 17365668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function.
    Tew GA; Klonizakis M; Crank H; Briers JD; Hodges GJ
    Microvasc Res; 2011 Nov; 82(3):326-32. PubMed ID: 21803051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of pigmented skin lesions in terms of blood perfusion estimates.
    Ilias MA; Wårdell K; Stücker M; Anderson C; Salerud EG
    Skin Res Technol; 2004 Feb; 10(1):43-9. PubMed ID: 14731248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cutaneous blood flow measurements for the detection of malignancy in pigmented skin lesions.
    Tur E; Brenner S
    Dermatology; 1992; 184(1):8-11. PubMed ID: 1559002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of skin vasomotion during phollicular and luteal phase in young healthy women.
    Rossi M; Di Maria C; Erba P; Galetta F; Carpi A; Santoro G
    Clin Hemorheol Microcirc; 2009; 42(2):107-15. PubMed ID: 19433884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet analysis of Laser Doppler Flux time series of tumor and inflammatory associated neoangiogenesis. Differences in rhythmical behavior.
    Häfner HM; Bräuer K; Radke C; Eichner M; Strölin A
    Clin Hemorheol Microcirc; 2009; 43(3):191-201. PubMed ID: 19847053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the adaptive wavelet transform for analysis of blood flow oscillations in the human skin.
    Tankanag A; Chemeris N
    Phys Med Biol; 2008 Nov; 53(21):5967-76. PubMed ID: 18836220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelet analysis of the effects of static magnetic field on skin blood flowmotion: investigation using an in vivo rat model.
    Li Z; Tam EW; Mak AF; Lau RY
    In Vivo; 2007; 21(1):61-8. PubMed ID: 17354615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of pigmented skin lesions and malignant melanoma by Laser Doppler flowmetry - Report of different cases and further analysis by a neuronal network.
    Konschake W; Lutze S; Haase H; Jünger M; Arnold A
    Clin Hemorheol Microcirc; 2020; 76(4):525-533. PubMed ID: 32924991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased laser Doppler flow in skin tumors corresponds to elevated vessel density and reactive hyperemia.
    Stücker M; Springer C; Paech V; Hermes N; Hoffmann M; Altmeyer P
    Skin Res Technol; 2006 Feb; 12(1):1-6. PubMed ID: 16420531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skin vasomotion investigation: a useful tool for clinical evaluation of microvascular endothelial function?
    Rossi M; Carpi A; Galetta F; Franzoni F; Santoro G
    Biomed Pharmacother; 2008 Oct; 62(8):541-5. PubMed ID: 18783911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducibility of transcutaneous oximetry and laser Doppler flowmetry in facial skin and gingival tissue.
    Svalestad J; Hellem S; Vaagbø G; Irgens A; Thorsen E
    Microvasc Res; 2010 Jan; 79(1):29-33. PubMed ID: 19837098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired local microvascular vasodilatory effects of insulin and reduced skin microvascular vasomotion in obese women.
    de Jongh RT; Serné EH; IJzerman RG; Jørstad HT; Stehouwer CD
    Microvasc Res; 2008 Mar; 75(2):256-62. PubMed ID: 17920639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelet analysis of acute effects of static magnetic field on resting skin blood flow at the nail wall in young men.
    Yan Y; Shen G; Xie K; Tang C; Wu X; Xu Q; Liu J; Song J; Jiang X; Luo E
    Microvasc Res; 2011 Nov; 82(3):277-83. PubMed ID: 21439302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-amplitude analysis of skin blood flow oscillations during the post-occlusive reactive hyperemia in human.
    Tikhonova IV; Tankanag AV; Chemeris NK
    Microvasc Res; 2010 Jul; 80(1):58-64. PubMed ID: 20346365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An expert system for cutaneous blood flow in melanocytic skin lesions.
    Haase H; Jünger M
    Clin Hemorheol Microcirc; 2004; 30(3-4):253-62. PubMed ID: 15258351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the suitability of laser-Doppler flowmetry for capturing microvascular blood flow dynamics from darkly pigmented skin.
    Abdulhameed YA; Lancaster G; McClintock PVE; Stefanovska A
    Physiol Meas; 2019 Aug; 40(7):074005. PubMed ID: 31158825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Doppler flowmetry, a reliable technique for measuring pharmacologically induced changes in cutaneous blood flow?
    Müller P; Keller R; Imhof P
    Methods Find Exp Clin Pharmacol; 1987 Jun; 9(6):409-20. PubMed ID: 2958664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blunted increase of digital skin vasomotion following acetylcholine and sodium nitroprusside iontophoresis in systemic sclerosis patients.
    Rossi M; Bazzichi L; Di Maria C; Franzoni F; Raimo K; Della Rossa A; Santoro G; Bombardieri S
    Rheumatology (Oxford); 2008 Jul; 47(7):1012-7. PubMed ID: 18430760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.