These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15638149)

  • 1. Controlling the retention in capillary LC with solvents, temperature, and electric fields.
    Jandera P; Blomberg LG; Lundanes E
    J Sep Sci; 2004 Dec; 27(17-18):1402-18. PubMed ID: 15638149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview.
    Nazario CE; Silva MR; Franco MS; Lanças FM
    J Chromatogr A; 2015 Nov; 1421():18-37. PubMed ID: 26381569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature effects in liquid chromatography.
    Lundanes E; Greibrokk T
    Adv Chromatogr; 2006; 44():45-77. PubMed ID: 16248479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review.
    Vasconcelos Soares Maciel E; de Toffoli AL; Sobieski E; Domingues Nazário CE; Lanças FM
    Anal Chim Acta; 2020 Mar; 1103():11-31. PubMed ID: 32081175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing.
    Groskreutz SR; Horner AR; Weber SG
    J Chromatogr A; 2015 Jul; 1405():133-9. PubMed ID: 26091787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient elution electrochromatography with a flow-injection analysis interface.
    Lister AS; Rimmer CA; Dorsey JG
    J Chromatogr A; 1998 Dec; 828(1-2):105-12. PubMed ID: 9916300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of separation in two-dimensional high-performance liquid chromatography by adjusting phase system selectivity and using programmed elution techniques.
    Jandera P; Cesla P; Hájek T; Vohralík G; Vynuchalová K; Fischer J
    J Chromatogr A; 2008 May; 1189(1-2):207-20. PubMed ID: 18067903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature programming and gradient elution in reversed-phase chromatography with packed capillary columns.
    Chen MH; Horváth C
    J Chromatogr A; 1997 Nov; 788(1-2):51-61. PubMed ID: 9419873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.
    Wiese S; Teutenberg T; Schmidt TC
    J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometry.
    Ivanov AR; Horváth C; Karger BL
    Electrophoresis; 2003 Nov; 24(21):3663-73. PubMed ID: 14613191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.
    Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC
    J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary electrochromatography with gradient elution.
    Huber CG; Choudhary G; Horváth C
    Anal Chem; 1997 Nov; 69(21):4429-36. PubMed ID: 9360495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of automated isocratic and gradient nano-liquid chromatography and capillary electrochromatography.
    Alexander ; Poli JB; Markides KE
    Anal Chem; 1999 Jul; 71(13):2398-409. PubMed ID: 21662785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of column inner diameter on chromatographic performance in temperature gradient liquid chromatography.
    Molander P; Olsen R; Lundanes E; Greibrokk T
    Analyst; 2003 Nov; 128(11):1341-5. PubMed ID: 14700227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possibilities of retention prediction in fast gradient liquid chromatography. Part 1: Comparison of separation on packed fully porous, nonporous and monolithic columns.
    Vyňuchalová K; Jandera P
    J Chromatogr A; 2013 Feb; 1278():37-45. PubMed ID: 23336942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid temperature-programmed separation and retention prediction on a novel packed-capillary column in gas chromatography.
    Inoue M; Saito Y; Ueta I; Miura T; Ohkita H; Fujimura K; Jinno K
    Anal Sci; 2010; 26(6):687-91. PubMed ID: 20543501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics.
    Lesellier E; Mith D; Dubrulle I
    J Chromatogr A; 2015 Dec; 1423():158-68. PubMed ID: 26553956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of column temperature gradient and mobile phase flow gradient in microcolumn and capillary column high-performance liquid chromatography.
    Houdiere F; Fowler PW; Djordjevic NM
    Anal Chem; 1997 Jul; 69(13):2589-93. PubMed ID: 21639394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.
    Gritti F
    J Chromatogr A; 2016 Nov; 1473():38-47. PubMed ID: 27814914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General theory of peak compression in liquid chromatography.
    Gritti F
    J Chromatogr A; 2016 Feb; 1433():114-22. PubMed ID: 26805599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.