These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15638149)

  • 21. Methacrylate monolithic capillary columns for gradient peptide separations.
    Pruim P; Ohman M; Huo Y; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2008 Oct; 1208(1-2):109-15. PubMed ID: 18771770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-temperature separations on a polymer-coated fibrous stationary phase in microcolumn liquid chromatography.
    Nakane K; Shirai S; Saito Y; Moriwake Y; Ueta I; Inoue M; Jinno K
    Anal Sci; 2011; 27(8):811-6. PubMed ID: 21828918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation efficiency kinetics of capillary flow micro-pillar array columns for liquid chromatography.
    Desmet G; de Beeck JO; Van Raemdonck G; Van Mol K; Claerebout B; Van Landuyt N; Jacobs P
    J Chromatogr A; 2020 Aug; 1626():461279. PubMed ID: 32797811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins.
    Jandera P; Kučerová Z; Urban J
    J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in open tubular capillary liquid chromatography.
    Lam SC; Sanz Rodriguez E; Haddad PR; Paull B
    Analyst; 2019 Jun; 144(11):3464-3482. PubMed ID: 30976764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gradient elution in normal-phase high-performance liquid chromatographic systems.
    Jandera P
    J Chromatogr A; 2002 Aug; 965(1-2):239-61. PubMed ID: 12236529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-line solid phase extraction-liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems.
    Rogeberg M; Malerod H; Roberg-Larsen H; Aass C; Wilson SR
    J Pharm Biomed Anal; 2014 Jan; 87():120-9. PubMed ID: 23746991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part II: gradient experiments.
    Guillarme D; Nguyen DT; Rudaz S; Veuthey JL
    Eur J Pharm Biopharm; 2008 Feb; 68(2):430-40. PubMed ID: 17703929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation.
    Guillarme D; Nguyen DT; Rudaz S; Veuthey JL
    Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Miniaturised medium pressure capillary liquid chromatography system with flexible open platform design using off-the-shelf microfluidic components.
    Li Y; Dvořák M; Nesterenko PN; Stanley R; Nuchtavorn N; Krčmová LK; Aufartová J; Macka M
    Anal Chim Acta; 2015 Oct; 896():166-76. PubMed ID: 26482001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gradient elution techniques for capillary electrochromatography.
    Rimmer CA; Piraino SM; Dorsey JG
    J Chromatogr A; 2000 Jul; 887(1-2):115-24. PubMed ID: 10961307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Destructive stationary phase gradients for reversed-phase/hydrophilic interaction liquid chromatography.
    Cain CN; Forzano AV; Rutan SC; Collinson MM
    J Chromatogr A; 2018 Oct; 1570():82-90. PubMed ID: 30104058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the feasibility to conduct gradient liquid chromatography separations in narrow-bore columns at pressures up to 2000bar.
    De Pauw R; Swier T; Degreef B; Desmet G; Broeckhoven K
    J Chromatogr A; 2016 Nov; 1473():48-55. PubMed ID: 28029367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serially coupled column liquid chromatography: An alternative separation tool.
    Gong X; Chen W; Zhang K; Li T; Song Q
    J Chromatogr A; 2023 Sep; 1706():464278. PubMed ID: 37572536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementations of temperature gradients in temperature-responsive liquid chromatography.
    Baert M; Wicht K; Moussa A; Desmet G; Broeckhoven K; Lynen F
    J Chromatogr A; 2021 Sep; 1654():462425. PubMed ID: 34425285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of the gradient profile, sample volume and solvent on the separation in very fast gradients, with special attention to the second-dimension gradient in comprehensive two-dimensional liquid chromatography.
    Jandera P; Hájek T; Cesla P
    J Chromatogr A; 2011 Apr; 1218(15):1995-2006. PubMed ID: 21081232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Migration and elution equations in gradient liquid chromatography.
    Blumberg LM
    J Chromatogr A; 2019 Aug; 1599():35-45. PubMed ID: 31151693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Instrument platforms for nano liquid chromatography.
    Šesták J; Moravcová D; Kahle V
    J Chromatogr A; 2015 Nov; 1421():2-17. PubMed ID: 26265002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enantiomeric separation of some chiral analytes using amylose 3,5-dimethylphenylcarbamate covalently immobilized on silica by nano-liquid chromatography and capillary electrochromatography.
    D'Orazio G; Fanali C; Karchkhadze M; Chankvetadze B; Fanali S
    J Chromatogr A; 2017 Oct; 1520():127-134. PubMed ID: 28917599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.