These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15638500)

  • 1. Glycerol derivatives of cutin and suberin monomers: synthesis and self-assembly.
    Douliez JP; Barrault J; Jerome F; Heredia A; Navailles L; Nallet F
    Biomacromolecules; 2005; 6(1):30-4. PubMed ID: 15638500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cutin and suberin monomers are membrane perturbants.
    Douliez JP
    J Colloid Interface Sci; 2004 Mar; 271(2):507-10. PubMed ID: 14972629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation of aliphatic suberin in Quercus suber L. cork by FTIR spectroscopy and solid-state (13)C-NMR spectroscopy.
    Lopes MH; Neto CP; Barros AS; Rutledge D; Delgadillo I; Gil AM
    Biopolymers; 2000; 57(6):344-51. PubMed ID: 11054654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suberin of potato (Solanum tuberosum var. Nikola): comparison of the effect of cutinase CcCut1 with chemical depolymerization.
    Järvinen R; Silvestre AJ; Holopainen U; Kaimainen M; Nyyssölä A; Gil AM; Pascoal Neto C; Lehtinen P; Buchert J; Kallio H
    J Agric Food Chem; 2009 Oct; 57(19):9016-27. PubMed ID: 19739639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of fatty acid-alkylboladiamine salts.
    Douliez JP; Navailles L; Nallet F
    Langmuir; 2006 Jan; 22(2):622-7. PubMed ID: 16401110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New aspects on membrane lipid regulation in Acholeplasma laidlawii A and phase equilibria of monoacyldiglucosyldiacylglycerol.
    Andersson AS; Rilfors L; Bergqvist M; Persson S; Lindblom G
    Biochemistry; 1996 Aug; 35(34):11119-30. PubMed ID: 8780516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including (1) H-NMR multiplet analysis of olefinic protons.
    Santos S; Graça J
    Phytochem Anal; 2014; 25(3):192-200. PubMed ID: 24307616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diglycerol alkenedioates in suberin: building units of a poly(acylglycerol) polyester.
    Graça J; Pereira H
    Biomacromolecules; 2000; 1(4):519-22. PubMed ID: 11710176
    [No Abstract]   [Full Text] [Related]  

  • 9. Attenuated total reflection Fourier transform infrared spectroscopy: a method of choice for studying membrane proteins and lipids.
    Tatulian SA
    Biochemistry; 2003 Oct; 42(41):11898-907. PubMed ID: 14556620
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis and characterization of novel biopolyesters from suberin and model comonomers.
    Sousa AF; Gandini A; Silvestre AJ; Pascoal Neto C
    ChemSusChem; 2008; 1(12):1020-5. PubMed ID: 19040255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphism of cellulose I family: reinvestigation of cellulose IVI.
    Wada M; Heux L; Sugiyama J
    Biomacromolecules; 2004; 5(4):1385-91. PubMed ID: 15244455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycerol and glyceryl esters of omega-hydroxyacids in cutins.
    Graça J; Schreiber L; Rodrigues J; Pereira H
    Phytochemistry; 2002 Sep; 61(2):205-15. PubMed ID: 12169316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear aliphatic dimeric esters from cork suberin.
    Graça J; Santos S
    Biomacromolecules; 2006 Jun; 7(6):2003-10. PubMed ID: 16768426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building lipid barriers: biosynthesis of cutin and suberin.
    Pollard M; Beisson F; Li Y; Ohlrogge JB
    Trends Plant Sci; 2008 May; 13(5):236-46. PubMed ID: 18440267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared and nuclear magnetic resonance spectroscopic study of secondary amide hydrogen bonding in benzoyl PABA derivatives (retinoids).
    Dalterio R; Huang XS; Yu KL
    Appl Spectrosc; 2007 Jun; 61(6):603-7. PubMed ID: 17650370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 13C solid-state nuclear magnetic resonance and Fourier transform infrared studies of the thermal decomposition of cork.
    Pascoal Neto C; Rocha J; Gil A; Cordeiro N; Esculcas AP; Rocha S; Delgadillo I; de Jesus JD; Correia AJ
    Solid State Nucl Magn Reson; 1995 Mar; 4(3):143-51. PubMed ID: 7773647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycerol-derived ester oligomers from cork suberin.
    Graça J; Santos S
    Chem Phys Lipids; 2006 Oct; 144(1):96-107. PubMed ID: 16979606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials.
    Li Y; Beisson F
    Biochimie; 2009 Jun; 91(6):685-91. PubMed ID: 19344744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cork suberin molecular structure: stereochemistry of the C18 epoxy and vic-diol ω-hydroxyacids and α,ω-diacids analyzed by NMR.
    Santos S; Cabral V; Graça J
    J Agric Food Chem; 2013 Jul; 61(29):7038-47. PubMed ID: 23841500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic isolation and structural characterisation of polymeric suberin of cork from Quercus suber L.
    Rocha SM; Goodfellow BJ; Delgadillo I; Neto CP; Gil AM
    Int J Biol Macromol; 2001 Jan; 28(2):107-19. PubMed ID: 11164227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.