These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 15638566)
1. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates. Czakó G; Szalay V; Császár AG; Furtenbacher T J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566 [TBL] [Abstract][Full Text] [Related]
2. Use of a nondirect-product basis for treating singularities in triatomic rotational-vibrational calculations. Czakó G; Furtenbacher T; Barletta P; Császár AG; Szalay V; Sutcliffe BT Phys Chem Chem Phys; 2007 Jul; 9(26):3407-15. PubMed ID: 17664964 [TBL] [Abstract][Full Text] [Related]
3. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation. Szidarovszky T; Császár AG; Czakó G Phys Chem Chem Phys; 2010 Aug; 12(29):8373-86. PubMed ID: 20526489 [TBL] [Abstract][Full Text] [Related]
4. Finite basis representations with nondirect product basis functions having structure similar to that of spherical harmonics. Czakó G; Szalay V; Császár AG J Chem Phys; 2006 Jan; 124(1):14110. PubMed ID: 16409027 [TBL] [Abstract][Full Text] [Related]
5. A multidimensional discrete variable representation basis obtained by simultaneous diagonalization. Dawes R; Carrington T J Chem Phys; 2004 Jul; 121(2):726-36. PubMed ID: 15260599 [TBL] [Abstract][Full Text] [Related]
6. How to choose one-dimensional basis functions so that a very efficient multidimensional basis may be extracted from a direct product of the one-dimensional functions: energy levels of coupled systems with as many as 16 coordinates. Dawes R; Carrington T J Chem Phys; 2005 Apr; 122(13):134101. PubMed ID: 15847449 [TBL] [Abstract][Full Text] [Related]
7. On the use of optimal internal vibrational coordinates for symmetrical bent triatomic molecules. Zúñiga J; Picón JA; Bastida A; Requena A J Chem Phys; 2005 Jun; 122(22):224319. PubMed ID: 15974680 [TBL] [Abstract][Full Text] [Related]
8. Full-dimensional quantum calculations of vibrational spectra of six-atom molecules. I. Theory and numerical results. Yu HG J Chem Phys; 2004 Feb; 120(5):2270-84. PubMed ID: 15268366 [TBL] [Abstract][Full Text] [Related]
9. Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation. Mátyus E; Czakó G; Sutcliffe BT; Császár AG J Chem Phys; 2007 Aug; 127(8):084102. PubMed ID: 17764224 [TBL] [Abstract][Full Text] [Related]
10. Algebraic-matrix calculation of vibrational levels of triatomic molecules. Sedivcová-Uhlíková T; Abdullah HY; Manini N J Phys Chem A; 2009 May; 113(21):6142-8. PubMed ID: 19419231 [TBL] [Abstract][Full Text] [Related]
11. Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations. Mátyus E; Czakó G; Császár AG J Chem Phys; 2009 Apr; 130(13):134112. PubMed ID: 19355722 [TBL] [Abstract][Full Text] [Related]
12. A new basis set for molecular bending degrees of freedom. Jutier L J Chem Phys; 2010 Jul; 133(3):034107. PubMed ID: 20649308 [TBL] [Abstract][Full Text] [Related]
13. Optimal grids for generalized finite basis and discrete variable representations: definition and method of calculation. Szalay V J Chem Phys; 2006 Oct; 125(15):154115. PubMed ID: 17059247 [TBL] [Abstract][Full Text] [Related]
14. Using a nondirect product discrete variable representation for angular coordinates to compute vibrational levels of polyatomic molecules. Wang XG; Carrington T J Chem Phys; 2008 May; 128(19):194109. PubMed ID: 18500858 [TBL] [Abstract][Full Text] [Related]
15. A discrete variable representation method for studying the rovibrational quantum dynamics of molecules with more than three atoms. Wang XG; Carrington T J Chem Phys; 2009 Mar; 130(9):094101. PubMed ID: 19275390 [TBL] [Abstract][Full Text] [Related]
16. Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational Schrodinger equation. Dawes R; Carrington T J Chem Phys; 2006 Feb; 124(5):054102. PubMed ID: 16468846 [TBL] [Abstract][Full Text] [Related]
17. Contracted basis Lanczos methods for computing numerically exact rovibrational levels of methane. Wang XG; Carrington T J Chem Phys; 2004 Aug; 121(7):2937-54. PubMed ID: 15291604 [TBL] [Abstract][Full Text] [Related]
18. Vibrational energy levels of CH5(+). Wang XG; Carrington T J Chem Phys; 2008 Dec; 129(23):234102. PubMed ID: 19102521 [TBL] [Abstract][Full Text] [Related]