These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 15639089)
1. Ascorbate abolishes auxotrophy caused by the lack of superoxide dismutase in Saccharomyces cerevisiae. Yeast can be a biosensor for antioxidants. Zyracka E; Zadrag R; Kozioł S; Krzepiłko A; Bartosz G; Biliński T J Biotechnol; 2005 Feb; 115(3):271-8. PubMed ID: 15639089 [TBL] [Abstract][Full Text] [Related]
2. Yeast as a biosensor for antioxidants: simple growth tests employing a Saccharomyces cerevisiae mutant defective in superoxide dismutase. Zyracka E; Zadrag R; Kozioł S; Krzepiłko A; Bartosz G; Biliński T Acta Biochim Pol; 2005; 52(3):679-84. PubMed ID: 16175242 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite. Kwolek-Mirek M; Bartosz G; Spickett CM Yeast; 2011 Aug; 28(8):595-609. PubMed ID: 21761455 [TBL] [Abstract][Full Text] [Related]
5. Yeast Saccharomyces cerevisiae devoid of Cu,Zn-superoxide dismutase as a cellular model to study acrylamide toxicity. Kwolek-Mirek M; Zadrag-Tecza R; Bednarska S; Bartosz G Toxicol In Vitro; 2011 Mar; 25(2):573-9. PubMed ID: 21172417 [TBL] [Abstract][Full Text] [Related]
6. Ascorbate and thiol antioxidants abolish sensitivity of yeast Saccharomyces cerevisiae to disulfiram. Kwolek-Mirek M; Zadrag-Tecza R; Bartosz G Cell Biol Toxicol; 2012 Feb; 28(1):1-9. PubMed ID: 21866320 [TBL] [Abstract][Full Text] [Related]
7. Lack of evidence of oxidative damage in antioxidant-deficient strains of Saccharomyces cerevisiae. Fortuniak A; Jakubowski W; Biliński T; Bartosz G Biochem Mol Biol Int; 1996 May; 38(6):1271-6. PubMed ID: 8739049 [TBL] [Abstract][Full Text] [Related]
8. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. Poljsak B; Gazdag Z; Jenko-Brinovec S; Fujs S; Pesti M; Bélagyi J; Plesnicar S; Raspor P J Appl Toxicol; 2005; 25(6):535-48. PubMed ID: 16092082 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants. Amari F; Fettouche A; Samra MA; Kefalas P; Kampranis SC; Makris AM J Agric Food Chem; 2008 Dec; 56(24):11740-51. PubMed ID: 19049288 [TBL] [Abstract][Full Text] [Related]
10. Limited effectiveness of antioxidants in the protection of yeast defective in antioxidant proteins. Lewinska A; Bilinski T; Bartosz G Free Radic Res; 2004 Nov; 38(11):1159-65. PubMed ID: 15621692 [TBL] [Abstract][Full Text] [Related]
11. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress. Jayaraman M; Radhika V; Bamne MN; Ramos R; Briggs R; Dhanasekaran DN Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540 [TBL] [Abstract][Full Text] [Related]
12. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Lushchak V; Semchyshyn H; Mandryk S; Lushchak O Arch Biochem Biophys; 2005 Sep; 441(1):35-40. PubMed ID: 16084798 [TBL] [Abstract][Full Text] [Related]
13. Morphological and physiological changes in Saccharomyces cerevisiae by oxidative stress from hyperbaric air. Belo I; Pinheiro R; Mota M J Biotechnol; 2005 Feb; 115(4):397-404. PubMed ID: 15639101 [TBL] [Abstract][Full Text] [Related]
14. Resistance to ionizing radiation and antioxidative defence in yeasts. Are antioxidant-deficient cells permanently stressed? Jaruga E; Lapshina EA; Biliński T; Płonka A; Bartosz G Biochem Mol Biol Int; 1995 Oct; 37(3):467-73. PubMed ID: 8595386 [TBL] [Abstract][Full Text] [Related]
15. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast. Kumar A; John L; Alam MM; Gupta A; Sharma G; Pillai B; Sengupta S Biochem J; 2006 May; 396(1):61-9. PubMed ID: 16433631 [TBL] [Abstract][Full Text] [Related]
16. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells. Akyilmaz E; Erdoğan A; Oztürk R; Yaşa I Biosens Bioelectron; 2007 Jan; 22(6):1055-60. PubMed ID: 16759846 [TBL] [Abstract][Full Text] [Related]
17. Antioxidants protect the yeast Saccharomyces cerevisiae against hypertonic stress. Koziol S; Zagulski M; Bilinski T; Bartosz G Free Radic Res; 2005 Apr; 39(4):365-71. PubMed ID: 16028362 [TBL] [Abstract][Full Text] [Related]
18. The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Haghjou MM; Shariati M; Smirnoff N Physiol Plant; 2009 Mar; 135(3):272-80. PubMed ID: 19236661 [TBL] [Abstract][Full Text] [Related]
19. Pro-oxidant action of diphenyl diselenide in the yeast Saccharomyces cerevisiae exposed to ROS-generating conditions. Moreira Rosa R; de Oliveira RB; Saffi J; Braga AL; Roesler R; Dal-Pizzol F; Fonseca Moreira JC; Brendel M; Pêgas Henriques JA Life Sci; 2005 Sep; 77(19):2398-411. PubMed ID: 15932762 [TBL] [Abstract][Full Text] [Related]
20. [Reducing oxidative DNA damage by adding antioxidants in human semen samples undergoing cryopreservation procedure]. Li ZL; Lin QL; Liu RJ; Xie WY; Xiao WF Zhonghua Yi Xue Za Zhi; 2007 Dec; 87(45):3174-7. PubMed ID: 18399108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]