BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 15639091)

  • 1. The influence of the chemical composition of cell culture material on the growth and antibody production of hybridoma cells.
    Heilmann K; Groth T; Behrsing O; Albrecht W; Schossig M; Lendlein A; Micheel B
    J Biotechnol; 2005 Feb; 115(3):291-301. PubMed ID: 15639091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The production of monoclonal antibody in growth-arrested hybridomas cultivated in suspension and immobilized modes.
    Seifert DB; Phillips JA
    Biotechnol Prog; 1999; 15(4):655-66. PubMed ID: 10441357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous production of monoclonal antibody in a packed-bed bioreactor.
    Golmakany N; Rasaee MJ; Furouzandeh M; Shojaosadati SA; Kashanian S; Omidfar K
    Biotechnol Appl Biochem; 2005 Jun; 41(Pt 3):273-8. PubMed ID: 15506916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles.
    Nilsang S; Nehru V; Plieva FM; Nandakumar KS; Rakshit SK; Holmdahl R; Mattiasson B; Kumar A
    Biotechnol Prog; 2008; 24(5):1122-31. PubMed ID: 19194922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: part I. Cell density, viability, and cell-cycle distribution.
    Dalm MC; Cuijten SM; van Grunsven WM; Tramper J; Martens DE
    Biotechnol Bioeng; 2004 Dec; 88(5):547-57. PubMed ID: 15459904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylcholine is favorable for antibody production from hybridoma cells.
    Montano X; Lewis AL; Leppard SW; Lichtenstein C
    Biotechnol Bioeng; 2005 Jun; 90(6):770-4. PubMed ID: 15803462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.
    Dong H; Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2005; 21(1):140-7. PubMed ID: 15903251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-based cell culture systems--an alternative to in vivo production of monoclonal antibodies.
    Nagel A; Koch S; Valley U; Emmrich F; Marx U
    Dev Biol Stand; 1999; 101():57-64. PubMed ID: 10566776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies.
    Dowd JE; Weber I; Rodriguez B; Piret JM; Kwok KE
    Biotechnol Bioeng; 1999 May; 63(4):484-92. PubMed ID: 10099629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supermacroporous polymer-based cryogel bioreactor for monoclonal antibody production in continuous culture using hybridoma cells.
    Jain E; Karande AA; Kumar A
    Biotechnol Prog; 2011; 27(1):170-80. PubMed ID: 20865749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system.
    Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2007; 23(1):255-64. PubMed ID: 17269696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical methods in media optimization for batch and fed-batch animal cell culture.
    De Alwis DM; Dutton RL; Scharer J; Moo-Young M
    Bioprocess Biosyst Eng; 2007 Mar; 30(2):107-13. PubMed ID: 17242929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal antibody production in hollow fiber bioreactors using serum-free medium.
    Heifetz AH; Braatz JA; Wolfe RA; Barry RM; Miller DA; Solomon BA
    Biotechniques; 1989 Feb; 7(2):192-9. PubMed ID: 2629847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line purification of monoclonal antibodies using an integrated stirred-tank reactor/expanded-bed adsorption system.
    Ohashi R; Otero JM; Chwistek A; Yamato I; Hamel JF
    Biotechnol Prog; 2002; 18(6):1292-300. PubMed ID: 12467465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular pH monitoring as a tool for the study of hybridoma cell behavior in batch and continuous bioreactor cultures.
    Cherlet M; Marc A
    Biotechnol Prog; 1998; 14(4):626-38. PubMed ID: 9694686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of three-dimensional culturing in a fibrous matrix on cell cycle, apoptosis, and MAb production by hybridoma cells.
    Luo J; Yang ST
    Biotechnol Prog; 2004; 20(1):306-15. PubMed ID: 14763857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24.
    Müthing J; Kemminer SE; Conradt HS; Sagi D; Nimtz M; Kärst U; Peter-Katalinić J
    Biotechnol Bioeng; 2003 Aug; 83(3):321-34. PubMed ID: 12783488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting monoclonal antibody production in culture.
    Reuveny S; Velez D; Macmillan JD; Miller L
    Dev Biol Stand; 1987; 66():169-75. PubMed ID: 3582746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new serum-free medium for monoclonal antibody production.
    Wolfe RA; Braatz JA; Miller DA; Heifetz AH
    Biotechniques; 1988 Jan; 6(1):62-7. PubMed ID: 3273394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperosmotic stress in murine hybridoma cells: effects on antibody transcription, translation, posttranslational processing, and the cell cycle.
    Sun Z; Zhou R; Liang S; McNeeley KM; Sharfstein ST
    Biotechnol Prog; 2004; 20(2):576-89. PubMed ID: 15059005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.