BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 1563990)

  • 41. Use of ultrasound to predict body composition changes in steers at 100 and 65 days before slaughter.
    Wall PB; Rouse GH; Wilson DE; Tait RG; Busby WD
    J Anim Sci; 2004 Jun; 82(6):1621-9. PubMed ID: 15216987
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of swine carcass composition by total body electrical conductivity (TOBEC).
    Higbie AD; Bidner TD; Matthews JO; Southern LL; Page TG; Persica MA; Sanders MB; Monlezun CJ
    J Anim Sci; 2002 Jan; 80(1):113-22. PubMed ID: 11831507
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic analyses of growth, real-time ultrasound, carcass, and pork quality traits in Duroc and Landrace pigs: I. Breed effects.
    Lo LL; McLaren DG; McKeith FK; Fernando RL; Novakofski J
    J Anim Sci; 1992 Aug; 70(8):2373-86. PubMed ID: 1506301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of slaughter cow composition using live animal and carcass traits.
    O'Mara FM; Williams SE; Tatum JD; Hilton GG; Pringle TD; Wise JW; Williams FL
    J Anim Sci; 1998 Jun; 76(6):1594-603. PubMed ID: 9655579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo estimation of goat carcass composition and body fat partition by real-time ultrasonography.
    Teixeira A; Joy M; Delfa R
    J Anim Sci; 2008 Sep; 86(9):2369-76. PubMed ID: 18469057
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of the porcine IGF2 intron 3-G3072A mutation on carcass cutability, meat quality, and bacon processing.
    Clark DL; Bohrer BM; Tavárez MA; Boler DD; Beever JE; Dilger AC
    J Anim Sci; 2014 Dec; 92(12):5778-88. PubMed ID: 25367517
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting pork loin chop yield using carcass and loin characteristics.
    Wilson KB; Overholt MF; Hogan EK; Schwab C; Shull CM; Ellis M; Grohmann NS; Dilger AC; Boler DD
    J Anim Sci; 2016 Nov; 94(11):4903-4910. PubMed ID: 27898928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of market hog characteristics of pigs selected by feeder pig frame size or current USDA feeder pig grade standards.
    Siemens AL; Lipsey RJ; Hedrick HB; Williams FL; Yokley SW; Siemens MG
    J Anim Sci; 1990 Aug; 68(8):2217-21. PubMed ID: 2401643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenotypic measurements and various indices of lean and fat tissue development in barrows and gilts of two genetic lines from twenty to one hundred twenty-five kilograms of body weight.
    Wiseman TG; Mahan DC; Moeller SJ; Peters JC; Fastinger ND; Ching S; Kim YY
    J Anim Sci; 2007 Jul; 85(7):1816-24. PubMed ID: 17400970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determining beef carcass retail product and fat yields within 1 hour postmortem.
    Apple JK; Dikeman ME; Cundiff LV; Wise JW
    J Anim Sci; 1991 Dec; 69(12):4845-57. PubMed ID: 1808179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of Duroc- vs. Pietrain-sired pigs for carcass and meat quality measures.
    Edwards DB; Bates RO; Osburn WN
    J Anim Sci; 2003 Aug; 81(8):1895-9. PubMed ID: 12926770
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimation in vivo of the body and carcass chemical composition of growing lambs by real-time ultrasonography.
    Silva SR; Gomes MJ; Dias-da-Silva A; Gil LF; Azevedo JM
    J Anim Sci; 2005 Feb; 83(2):350-7. PubMed ID: 15644507
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasonic, needle, and carcass measurements for predicting chemical composition of lamb carcasses.
    Ramsey CB; Kirton AH; Hogg B; Dobbie JL
    J Anim Sci; 1991 Sep; 69(9):3655-64. PubMed ID: 1938648
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The prediction of percentage of protein in pork carcasses.
    Johnson LP; Reagan JO; Haydon KD; Miller MF
    J Anim Sci; 1990 Dec; 68(12):4176-84. PubMed ID: 2286559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic parameters for carcass composition and pork quality estimated in a commercial production chain.
    van Wijk HJ; Arts DJ; Matthews JO; Webster M; Ducro BJ; Knol EF
    J Anim Sci; 2005 Feb; 83(2):324-33. PubMed ID: 15644503
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of serial ultrasound measures in the study of growth- and breed-related changes of ultrasonic measurements and relationship with carcass measurements in lean cattle breeds.
    Peña F; Molina A; Juárez M; Requena F; Avilés C; Santos R; Domenech V; Horcada A
    Meat Sci; 2014 Jan; 96(1):247-55. PubMed ID: 23917431
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of the prediction of alternative measures of pork carcass composition by three optical probes.
    Schinckel AP; Wagner JR; Forrest JC; Einstein ME
    J Anim Sci; 2010 Feb; 88(2):767-94. PubMed ID: 19820040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of ossification from live and carcass traits in young beef cattle: model development and evaluation.
    Gudex BW; McPhee MJ; Oddy VH; Walmsley BJ
    J Anim Sci; 2019 Jan; 97(1):144-155. PubMed ID: 30388230
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of gender and slaughter weight on the growth performance, carcass traits, and meat quality characteristics of heavy pigs.
    Latorre MA; Lázaro R; Valencia DG; Medel P; Mateos GG
    J Anim Sci; 2004 Feb; 82(2):526-33. PubMed ID: 14974552
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pork carcass composition: I. Interrelationships of compositional end points.
    Swensen K; Ellis M; Brewer MS; Novakofski J; McKeith FK
    J Anim Sci; 1998 Sep; 76(9):2399-404. PubMed ID: 9781496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.