BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15640142)

  • 1. SIRT1 shows no substrate specificity in vitro.
    Blander G; Olejnik J; Krzymanska-Olejnik E; McDonagh T; Haigis M; Yaffe MB; Guarente L
    J Biol Chem; 2005 Mar; 280(11):9780-5. PubMed ID: 15640142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT1 top 40 hits: use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity.
    Garske AL; Denu JM
    Biochemistry; 2006 Jan; 45(1):94-101. PubMed ID: 16388584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1.
    Bouras T; Fu M; Sauve AA; Wang F; Quong AA; Perkins ND; Hay RT; Gu W; Pestell RG
    J Biol Chem; 2005 Mar; 280(11):10264-76. PubMed ID: 15632193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases.
    Smith BC; Denu JM
    J Biol Chem; 2007 Dec; 282(51):37256-65. PubMed ID: 17951578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of NAD+ dependent histone deacetylases (sirtuins) in ageing.
    Trapp J; Jung M
    Curr Drug Targets; 2006 Nov; 7(11):1553-60. PubMed ID: 17100594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of human SIRT1 activation by resveratrol.
    Borra MT; Smith BC; Denu JM
    J Biol Chem; 2005 Apr; 280(17):17187-95. PubMed ID: 15749705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KDAC8 substrate specificity quantified by a biologically relevant, label-free deacetylation assay.
    Toro TB; Watt TJ
    Protein Sci; 2015 Dec; 24(12):2020-32. PubMed ID: 26402585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity in the Sir2 family of protein deacetylases.
    Buck SW; Gallo CM; Smith JS
    J Leukoc Biol; 2004 Jun; 75(6):939-50. PubMed ID: 14742637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide.
    Smith BC; Denu JM
    Biochemistry; 2007 Dec; 46(50):14478-86. PubMed ID: 18027980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into Lysine Deacetylation of Natively Folded Substrate Proteins by Sirtuins.
    Knyphausen P; de Boor S; Kuhlmann N; Scislowski L; Extra A; Baldus L; Schacherl M; Baumann U; Neundorf I; Lammers M
    J Biol Chem; 2016 Jul; 291(28):14677-94. PubMed ID: 27226597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase.
    Yeung F; Hoberg JE; Ramsey CS; Keller MD; Jones DR; Frye RA; Mayo MW
    EMBO J; 2004 Jun; 23(12):2369-80. PubMed ID: 15152190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
    Jackson MD; Schmidt MT; Oppenheimer NJ; Denu JM
    J Biol Chem; 2003 Dec; 278(51):50985-98. PubMed ID: 14522996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-activity relationship modeling reveals the minimal sequence requirement and amino acid preference of sirtuin-1's deacetylation substrates in diabetes mellitus.
    Shao X; Kong W; Li Y; Zhang S
    J Bioinform Comput Biol; 2022 Jun; 20(3):2250008. PubMed ID: 35451939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli.
    Zhao K; Chai X; Marmorstein R
    J Mol Biol; 2004 Mar; 337(3):731-41. PubMed ID: 15019790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-lysine propionylation controls the activity of propionyl-CoA synthetase.
    Garrity J; Gardner JG; Hawse W; Wolberger C; Escalante-Semerena JC
    J Biol Chem; 2007 Oct; 282(41):30239-45. PubMed ID: 17684016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfo-NHS-SS-biotin derivatization: a versatile tool for MALDI mass analysis of PTMs in lysine-rich proteins.
    Markoutsa S; Bahr U; Papasotiriou DG; Häfner AK; Karas M; Sorg BL
    Proteomics; 2014 Mar; 14(6):659-67. PubMed ID: 24449390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative and pharmacophore model for deacetylase SIRT1.
    Huhtiniemi T; Wittekindt C; Laitinen T; Leppänen J; Salminen A; Poso A; Lahtela-Kakkonen M
    J Comput Aided Mol Des; 2006 Sep; 20(9):589-99. PubMed ID: 17103016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the yeast Hst2 protein deacetylase in ternary complex with 2'-O-acetyl ADP ribose and histone peptide.
    Zhao K; Chai X; Marmorstein R
    Structure; 2003 Nov; 11(11):1403-11. PubMed ID: 14604530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.