These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15640151)

  • 1. Engineering a selectable marker for hyperthermophiles.
    Brouns SJ; Wu H; Akerboom J; Turnbull AP; de Vos WM; van der Oost J
    J Biol Chem; 2005 Mar; 280(12):11422-31. PubMed ID: 15640151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution for thermostabilization of a hygromycin B phosphotransferase from Streptomyces hygroscopicus.
    Sugimoto N; Takakura Y; Shiraki K; Honda S; Takaya N; Hoshino T; Nakamura A
    Biosci Biotechnol Biochem; 2013; 77(11):2234-41. PubMed ID: 24200799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostable repair enzyme for oxidative DNA damage from extremely thermophilic bacterium, Thermus thermophilus HB8.
    Mikawa T; Kato R; Sugahara M; Kuramitsu S
    Nucleic Acids Res; 1998 Feb; 26(4):903-10. PubMed ID: 9461446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water.
    Ladenstein R; Antranikian G
    Adv Biochem Eng Biotechnol; 1998; 61():37-85. PubMed ID: 9670797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unusual route to thermostability disclosed by the comparison of Thermus thermophilus and Escherichia coli inorganic pyrophosphatases.
    Salminen T; Teplyakov A; Kankare J; Cooperman BS; Lahti R; Goldman A
    Protein Sci; 1996 Jun; 5(6):1014-25. PubMed ID: 8762133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus.
    Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA
    J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the thermostability of bacterial ferredoxins: high-resolution crystal structure of the seven-iron ferredoxin from Thermus thermophilus.
    Macedo-Ribeiro S; Martins BM; Pereira PJ; Buse G; Huber R; Soulimane T
    J Biol Inorg Chem; 2001 Sep; 6(7):663-74. PubMed ID: 11681700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of indole-3-glycerol phosphate synthase from Thermus thermophilus HB8: implications for thermal stability.
    Bagautdinov B; Yutani K
    Acta Crystallogr D Biol Crystallogr; 2011 Dec; 67(Pt 12):1054-64. PubMed ID: 22120743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification.
    Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G
    Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus.
    Hoseki J; Yano T; Koyama Y; Kuramitsu S; Kagamiyama H
    J Biochem; 1999 Nov; 126(5):951-6. PubMed ID: 10544290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo directed evolution for thermostabilization of Escherichia coli hygromycin B phosphotransferase and the use of the gene as a selection marker in the host-vector system of Thermus thermophilus.
    Nakamura A; Takakura Y; Kobayashi H; Hoshino T
    J Biosci Bioeng; 2005 Aug; 100(2):158-63. PubMed ID: 16198257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus.
    Mate DM; Rivera NR; Sanchez-Freire E; Ayala JA; Berenguer J; Hidalgo A
    Biotechnol Bioeng; 2020 Jan; 117(1):30-38. PubMed ID: 31529702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular strategies for protein stabilization: the case of a trehalose/maltose-binding protein from Thermus thermophilus.
    Scirè A; Marabotti A; Aurilia V; Staiano M; Ringhieri P; Iozzino L; Crescenzo R; Tanfani F; D'Auria S
    Proteins; 2008 Dec; 73(4):839-50. PubMed ID: 18506781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions.
    Hua Q; Dementieva IS; Walsh MA; Hallenga K; Weiss MA; Joachimiak A
    J Mol Biol; 2001 Feb; 306(3):513-25. PubMed ID: 11178910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8.
    Okamoto A; Kato R; Masui R; Yamagishi A; Oshima T; Kuramitsu S
    J Biochem; 1996 Jan; 119(1):135-44. PubMed ID: 8907187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermostability of DNA-binding protein HU from mesophilic, thermophilic, and extreme thermophilic bacteria.
    Christodoulou E; Vorgias CE
    Extremophiles; 2002 Feb; 6(1):21-31. PubMed ID: 11878558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites.
    Cuneo MJ; Changela A; Warren JJ; Beese LS; Hellinga HW
    J Mol Biol; 2006 Sep; 362(2):259-70. PubMed ID: 16904687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioenergetics at extreme temperature: Thermus thermophilus ba(3)- and caa(3)-type cytochrome c oxidases.
    Radzi Noor M; Soulimane T
    Biochim Biophys Acta; 2012 Apr; 1817(4):638-49. PubMed ID: 22385645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of hydroxymethylpyrimidine phosphate kinase from mesophilic and thermophilic bacteria and structural insights into their differential thermal stability.
    Cea PA; Araya G; Vallejos G; Recabarren R; Alzate-Morales J; Babul J; Guixé V; Castro-Fernandez V
    Arch Biochem Biophys; 2020 Jul; 688():108389. PubMed ID: 32387178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.