These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 15640211)
1. Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Fomina M; Hillier S; Charnock JM; Melville K; Alexander IJ; Gadd GM Appl Environ Microbiol; 2005 Jan; 71(1):371-81. PubMed ID: 15640211 [TBL] [Abstract][Full Text] [Related]
2. [WET-MODE SCANNING ELECTRON MICROSCOPY AS AN INSTRUMENT FOR STUDIES OF BIOGEOCHEMICAL PROCESSES OF FUNGAL BIOMINERALS FORMATION]. Fomina MA; Podgorsky VS Mikrobiol Z; 2015; 77(3):9-15. PubMed ID: 26214893 [TBL] [Abstract][Full Text] [Related]
3. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Gadd GM Adv Microb Physiol; 1999; 41():47-92. PubMed ID: 10500844 [TBL] [Abstract][Full Text] [Related]
4. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Fomina M; Charnock J; Bowen AD; Gadd GM Environ Microbiol; 2007 Feb; 9(2):308-21. PubMed ID: 17222130 [TBL] [Abstract][Full Text] [Related]
6. Phosphatase-mediated bioprecipitation of lead by soil fungi. Liang X; Kierans M; Ceci A; Hillier S; Gadd GM Environ Microbiol; 2016 Jan; 18(1):219-31. PubMed ID: 26235107 [TBL] [Abstract][Full Text] [Related]
7. Fungal biotransformation of zinc silicate and sulfide mineral ores. Wei Z; Liang X; Pendlowski H; Hillier S; Suntornvongsagul K; Sihanonth P; Gadd GM Environ Microbiol; 2013 Aug; 15(8):2173-86. PubMed ID: 23419112 [TBL] [Abstract][Full Text] [Related]
8. Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. Sayer JA; Kierans M; Gadd GM FEMS Microbiol Lett; 1997 Sep; 154(1):29-35. PubMed ID: 9297818 [TBL] [Abstract][Full Text] [Related]
9. Protection of Metal Artifacts with the Formation of Metal-Oxalates Complexes by Beauveria bassiana. Joseph E; Cario S; Simon A; Wörle M; Mazzeo R; Junier P; Job D Front Microbiol; 2011; 2():270. PubMed ID: 22291684 [TBL] [Abstract][Full Text] [Related]
10. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential. Grąz M World J Microbiol Biotechnol; 2024 Apr; 40(6):178. PubMed ID: 38662173 [TBL] [Abstract][Full Text] [Related]
11. Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology. Graz M; Jarosz-Wilkołazka A; Pawlikowska-Pawlega B Biometals; 2009 Jun; 22(3):401-10. PubMed ID: 18985279 [TBL] [Abstract][Full Text] [Related]
12. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Jarosz-Wilkolazka A; Gadd GM Chemosphere; 2003 Jul; 52(3):541-7. PubMed ID: 12738291 [TBL] [Abstract][Full Text] [Related]
13. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil. Debela F; Arocena JM; Thring RW; Whitcombe T J Environ Manage; 2013 Feb; 116():156-62. PubMed ID: 23313859 [TBL] [Abstract][Full Text] [Related]
14. Regulatory-systemic approach in Aspergillus niger for bioleaching improvement by controlling precipitation. Naderi A; Vakilchap F; Motamedian E; Mousavi SM Appl Microbiol Biotechnol; 2023 Dec; 107(23):7331-7346. PubMed ID: 37736792 [TBL] [Abstract][Full Text] [Related]
15. Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. Gunawardana B; Singhal N; Johnson A Int J Phytoremediation; 2011 Mar; 13(3):215-32. PubMed ID: 21598788 [TBL] [Abstract][Full Text] [Related]
16. Oxalic acid as a fungal acaracidal virulence factor. Kirkland BH; Eisa A; Keyhani NO J Med Entomol; 2005 May; 42(3):346-51. PubMed ID: 15962786 [TBL] [Abstract][Full Text] [Related]
17. Chelator-induced phytoextraction of zinc and copper by rice seedlings. Yu XZ; Wang DQ; Zhang XH Ecotoxicology; 2014 May; 23(4):749-56. PubMed ID: 24442416 [TBL] [Abstract][Full Text] [Related]
18. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil. Ash C; Tejnecký V; Borůvka L; Drábek O J Contam Hydrol; 2016 Apr; 187():18-30. PubMed ID: 26849837 [TBL] [Abstract][Full Text] [Related]
19. Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure. Awad M; Liu Z; Skalicky M; Dessoky ES; Brestic M; Mbarki S; Rastogi A; El Sabagh A Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33802758 [TBL] [Abstract][Full Text] [Related]
20. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation. McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]