These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15640211)

  • 41. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens.
    Sharifan H; Moore J; Ma X
    Ecotoxicol Environ Saf; 2020 Mar; 191():110177. PubMed ID: 31958627
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluating the survival of Aspergillus niger in a highly polluted red soil with addition of Phosphogypsum and bioorganic fertilizer.
    Meng L; Pan S; Zhou L; Santasup C; Su M; Tian D; Li Z
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76446-76455. PubMed ID: 35670942
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum.
    Tian D; Wang W; Su M; Zheng J; Wu Y; Wang S; Li Z; Hu S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):21118-21126. PubMed ID: 29770937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rock phosphate solubilization by abiotic and fungal-produced oxalic acid: reaction parameters and bioleaching potential.
    Mendes GO; Dyer T; Csetenyi L; Gadd GM
    Microb Biotechnol; 2022 Apr; 15(4):1189-1202. PubMed ID: 33710773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fungal transformation of metallic lead to pyromorphite in liquid medium.
    Rhee YJ; Hillier S; Pendlowski H; Gadd GM
    Chemosphere; 2014 Oct; 113():17-21. PubMed ID: 25065784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cadmium, lead, and zinc immobilization in soil by rice husk biochar in the presence of low molecular weight organic acids.
    Islam MS; Song Z; Gao R; Fu Q; Hu H
    Environ Technol; 2022 Jun; 43(16):2516-2529. PubMed ID: 33512309
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Decreasing the measurable concentrations of Cu, Zn, Cd, and Pb in the water of the experimental systems containing Ceratophyllum demersum: the phytoremediation potential.
    Ostroumov SA; Shestakova TV
    Dokl Biol Sci; 2009; 428():444-7. PubMed ID: 19994786
    [No Abstract]   [Full Text] [Related]  

  • 48. Mechanisms of heavy metal sorption on alkaline clays from Tundulu in Malawi as determined by EXAFS.
    Sajidu SM; Persson I; Masamba WR; Henry EM
    J Hazard Mater; 2008 Oct; 158(2-3):401-9. PubMed ID: 18329799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley.
    Tapparo A; Di Marco V; Badocco D; D'Aronco S; Soldà L; Pastore P; Mahon BM; Kalberer M; Giorio C
    Chemosphere; 2020 Feb; 241():125025. PubMed ID: 31604190
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stimulation of mycelial growth of Endothia parasitica by heavy metals.
    Englander CM; Corden ME
    Appl Microbiol; 1971 Dec; 22(6):1012-6. PubMed ID: 5137577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving the efficiency of metal removal from CCA-treated wood using brown rot fungi.
    Kim GH; Choi YS; Kim JJ
    Environ Technol; 2009 Jun; 30(7):673-9. PubMed ID: 19705604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reductive release of Fe mineral-associated organic matter accelerated by oxalic acid.
    Ding Y; Ye Q; Liu M; Shi Z; Liang Y
    Sci Total Environ; 2021 Apr; 763():142937. PubMed ID: 33498124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M
    Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of trace metals in calcium urolithiasis.
    Meyer JL; Angino EE
    Invest Urol; 1977 Mar; 14(5):347-50. PubMed ID: 844995
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains.
    Fomina M; Ritz K; Gadd GM
    Mycol Res; 2003 Jul; 107(Pt 7):861-71. PubMed ID: 12967214
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora.
    Albert Q; Leleyter L; Lemoine M; Heutte N; Rioult JP; Sage L; Baraud F; Garon D
    Chemosphere; 2018 Apr; 196():386-392. PubMed ID: 29316464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum.
    Tian D; Jiang Z; Jiang L; Su M; Feng Z; Zhang L; Wang S; Li Z; Hu S
    Environ Microbiol; 2019 Jan; 21(1):471-479. PubMed ID: 30421848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).
    Mijovilovich A; Leitenmaier B; Meyer-Klaucke W; Kroneck PM; Götz B; Küpper H
    Plant Physiol; 2009 Oct; 151(2):715-31. PubMed ID: 19692532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mineral balances of human subjects consuming spinach in a low-fiber diet and in a diet containing fruits and vegetables.
    Kelsay JL; Prather ES
    Am J Clin Nutr; 1983 Jul; 38(1):12-9. PubMed ID: 6305185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.