BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 15640807)

  • 21. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites.
    Zhu J; Cao W; Yue M; Hou Y; Han J; Yang M
    ACS Nano; 2015 Mar; 9(3):2489-501. PubMed ID: 25712334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-property relationship in polyethylene reinforced by polyethylene-grafted multi-walled carbon nanotubes.
    Causin V; Yang BX; Marega C; Goh SH; Marigo A
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1790-6. PubMed ID: 18572579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion and phase separation of carbon nanotubes in ultrathin polymer films.
    Foster J; Singamaneni S; Kattumenu R; Bliznyuk V
    J Colloid Interface Sci; 2005 Jul; 287(1):167-72. PubMed ID: 15914162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of surface decoration of CNTs on the interfacial interaction and microstructure of epoxy/MWNT nanocomposites.
    Zhou W; Wang B; Zheng Y; Zhu Y; Wang J; Qi N
    Chemphyschem; 2008 May; 9(7):1046-52. PubMed ID: 18389503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.
    Simoes R; Silva J; Vaia R; Sencadas V; Costa P; Gomes J; Lanceros-Méndez S
    Nanotechnology; 2009 Jan; 20(3):035703. PubMed ID: 19417305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-performance carbon nanotube fiber.
    Koziol K; Vilatela J; Moisala A; Motta M; Cunniff P; Sennett M; Windle A
    Science; 2007 Dec; 318(5858):1892-5. PubMed ID: 18006708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon nanotube reinforced aluminum nanocomposite via plasma and high velocity oxy-fuel spray forming.
    Laha T; Liu Y; Agarwal A
    J Nanosci Nanotechnol; 2007 Feb; 7(2):515-24. PubMed ID: 17450788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures.
    Kang I; Joung KY; Choi GR; Schulz MJ; Choi YS; Hwang SH; Ko HS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3736-9. PubMed ID: 18047048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression.
    Suhr J; Victor P; Ci L; Sreekala S; Zhang X; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2007 Jul; 2(7):417-21. PubMed ID: 18654325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts.
    Verdejo R; Jell G; Safinia L; Bismarck A; Stevens MM; Shaffer MS
    J Biomed Mater Res A; 2009 Jan; 88(1):65-73. PubMed ID: 18260133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.
    Her SC; Lin KY
    J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e13-e18. PubMed ID: 28525676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites.
    Agrawal R; Nieto A; Chen H; Mora M; Agarwal A
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12052-7. PubMed ID: 24236402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes.
    Chen D; Liu T; Zhou X; Tjiu WC; Hou H
    J Phys Chem B; 2009 Jul; 113(29):9741-8. PubMed ID: 19603838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.
    Li J; Gao Y; Ma W; Liu L; Zhang Z; Niu Z; Ren Y; Zhang X; Zeng Q; Dong H; Zhao D; Cai L; Zhou W; Xie S
    Nanoscale; 2011 Sep; 3(9):3731-6. PubMed ID: 21842105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification.
    Nie M; Kalyon DM; Fisher FT
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14886-93. PubMed ID: 25134606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge transport in melt-dispersed carbon nanotubes.
    Hobbie EK; Obrzut J; Kharchenko SB; Grulke EA
    J Chem Phys; 2006 Jul; 125(4):44712. PubMed ID: 16942179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergy derived by combining graphene and carbon nanotubes as nanofillers in composites.
    Yavari F; Chen L; Zandiatashbar A; Yu Z; Koratkar N
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3165-9. PubMed ID: 22849081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.
    Khare KS; Khare R
    J Phys Chem B; 2013 Jun; 117(24):7444-54. PubMed ID: 23691970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites.
    Zhang W; Picu RC; Koratkar N
    Nanotechnology; 2008 Jul; 19(28):285709. PubMed ID: 21828743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.
    Liu J; Chen C; Feng Y; Liao Y; Ye Y; Xie X; Mai YW
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1204-1216. PubMed ID: 29235354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.