BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 15640989)

  • 1. A physiologically based clinical measure for spastic reflexes in spinal cord injury.
    Benz EN; Hornby TG; Bode RK; Scheidt RA; Schmit BD
    Arch Phys Med Rehabil; 2005 Jan; 86(1):52-9. PubMed ID: 15640989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of the Spinal Cord Assessment Tool for Spastic Reflexes.
    Akpinar P; Atici A; Ozkan FU; Aktas I; Kulcu DG; Kurt KN
    Arch Phys Med Rehabil; 2017 Jun; 98(6):1113-1118. PubMed ID: 27744026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal Indices of Ankle Clonus and Relationship to Electrophysiologic and Clinical Measures in Persons With Spinal Cord Injury.
    Manella KJ; Roach KE; Field-Fote EC
    J Neurol Phys Ther; 2017 Oct; 41(4):229-238. PubMed ID: 28922314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of specific symptoms of spasticity on voluntary lower limb muscle function, gait and daily activities during subacute and chronic spinal cord injury.
    Bravo-Esteban E; Taylor J; Abián-Vicén J; Albu S; Simón-Martínez C; Torricelli D; Gómez-Soriano J
    NeuroRehabilitation; 2013; 33(4):531-43. PubMed ID: 24018366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tonic stretch reflex and spastic hypertonia after spinal cord injury.
    Woolacott AJ; Burne JA
    Exp Brain Res; 2006 Sep; 174(2):386-96. PubMed ID: 16680428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spasticity and preservation of skeletal muscle mass in people with spinal cord injury.
    Cha S; Yun JH; Myong Y; Shin HI
    Spinal Cord; 2019 Apr; 57(4):317-323. PubMed ID: 30552414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral oscillatory hip movements induce windup of multijoint lower extremity spastic reflexes in chronic spinal cord injury.
    Onushko T; Hyngstrom A; Schmit BD
    J Neurophysiol; 2011 Oct; 106(4):1652-61. PubMed ID: 21753029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexor reflex responses triggered by imposed knee extension in chronic human spinal cord injury.
    Wu M; Hornby TG; Kahn JH; Schmit BD
    Exp Brain Res; 2006 Jan; 168(4):566-76. PubMed ID: 16151779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical and electromyographic assessment of spastic hypertonus in motor complete traumatic spinal cord-injured individuals.
    Grippo A; Carrai R; Hawamdeh Z; Falsini C; Aito S; Pinto F; de Scisciolo G; Pizzi A
    Spinal Cord; 2011 Jan; 49(1):142-8. PubMed ID: 20531358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of spasticity on transfers and activities of daily living in individuals with spinal cord injury.
    Tibbett J; Widerström-Noga EG; Thomas CK; Field-Fote EC
    J Spinal Cord Med; 2019 May; 42(3):318-327. PubMed ID: 29334339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spastic reflexes triggered by ankle load release in human spinal cord injury.
    Wu M; Schmit BD
    J Neurophysiol; 2006 Dec; 96(6):2941-50. PubMed ID: 16855114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extensor reflexes in human spinal cord injury: activation by hip proprioceptors.
    Schmit BD; Benz EN
    Exp Brain Res; 2002 Aug; 145(4):520-7. PubMed ID: 12172664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of multijoint spastic reflexes of the legs during assisted bilateral hip oscillations in human spinal cord injury.
    Onushko T; Hyngstrom A; Schmit BD
    Arch Phys Med Rehabil; 2010 Aug; 91(8):1225-35. PubMed ID: 20684903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of spasticity of the knee flexors and knee extensors using isokinetic dynamometry with electromyography and clinical scales in children with spinal cord injury.
    Pierce SR; Johnston TE; Shewokis PA; Lauer RT
    J Spinal Cord Med; 2008; 31(2):208-14. PubMed ID: 18581670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflex responses to combined hip and knee motion in human chronic spinal cord injury.
    Wu M; Schmit BD
    J Rehabil Res Dev; 2010; 47(2):117-32. PubMed ID: 20593325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury - A pilot randomized cross-over trial.
    Sivaramakrishnan A; Solomon JM; Manikandan N
    J Spinal Cord Med; 2018 Jul; 41(4):397-406. PubMed ID: 29067867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical assessment of spasticity in spinal cord injury: a multidimensional problem.
    Priebe MM; Sherwood AM; Thornby JI; Kharas NF; Markowski J
    Arch Phys Med Rehabil; 1996 Jul; 77(7):713-6. PubMed ID: 8670001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilateral and asymmetrical contributions of passive and active ankle plantar flexors stiffness to spasticity in humans with spinal cord injury.
    Chen B; Sangari S; Lorentzen J; Nielsen JB; Perez MA
    J Neurophysiol; 2020 Sep; 124(3):973-984. PubMed ID: 32432501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulatory effects of locomotor training on extensor spasticity in individuals with motor-incomplete spinal cord injury.
    Manella KJ; Field-Fote EC
    Restor Neurol Neurosci; 2013; 31(5):633-46. PubMed ID: 23735314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.