BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15641844)

  • 1. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts.
    Kuznar ZA; Elimelech M
    Langmuir; 2005 Jan; 21(2):710-6. PubMed ID: 15641844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(6):1837-42. PubMed ID: 16570605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2004 Dec; 38(24):6839-45. PubMed ID: 15669347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition of Cryptosporidium parvum oocysts on natural organic matter surfaces: microscopic evidence for secondary minimum deposition in a radial stagnation point flow cell.
    Liu Y; Janjaroen D; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Langmuir; 2009 Feb; 25(3):1594-605. PubMed ID: 19133757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of divalent cations on deposition of Cryptosporidium parvum oocysts on natural organic matter surfaces.
    Janjaroen D; Liu Y; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Environ Sci Technol; 2010 Jun; 44(12):4519-24. PubMed ID: 20465262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition and conformation of Cryptosporidium parvum oocyst wall surface macromolecules and their effect on adhesion kinetics of oocysts on quartz surface.
    Liu Y; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Biomacromolecules; 2010 Aug; 11(8):2109-15. PubMed ID: 20690718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the interaction force between Cryptosporidium parvum oocysts and solid surfaces.
    Byrd TL; Walz JY
    Langmuir; 2007 Jul; 23(14):7475-83. PubMed ID: 17555335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptosporidium parvum oocyst inactivation in field soil and its relation to soil characteristics: analyses using the geographic information systems.
    Kato S; Jenkins M; Fogarty E; Bowman D
    Sci Total Environ; 2004 Apr; 321(1-3):47-58. PubMed ID: 15050384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.
    Luo X; Jedlicka S; Jellison K
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion of Cryptosporidium parvum and Giardia lamblia to solid surfaces: the role of surface charge and hydrophobicity.
    Dai X; Boll J; Hayes ME; Aston DE
    Colloids Surf B Biointerfaces; 2004 Apr; 34(4):259-63. PubMed ID: 15261066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bovine manure on Cryptosporidium parvum oocyst attachment to soil.
    Kuczynska E; Shelton DR; Pachepsky Y
    Appl Environ Microbiol; 2005 Oct; 71(10):6394-7. PubMed ID: 16204565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of Cryptosporidium parvum oocysts in a silicon micromodel.
    Liu Y; Zhang C; Hilpert M; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Environ Sci Technol; 2012 Feb; 46(3):1471-9. PubMed ID: 22229872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of viable and inactivated Cryptosporidium by dual- and tri-media filtration.
    Emelko MB
    Water Res; 2003 Jul; 37(12):2998-3008. PubMed ID: 12767303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and retention of Cryptosporidium parvum oocysts in sandy soils.
    SantamarĂ­a J; Brusseau ML; Araujo J; Orosz-Coghlan P; Blanford WJ; Gerba CP
    J Environ Qual; 2012; 41(4):1246-52. PubMed ID: 22751068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface characteristics on the stability of Cryptosporidium parvum oocysts.
    Butkus MA; Bays JT; Labare MP
    Appl Environ Microbiol; 2003 Jul; 69(7):3819-25. PubMed ID: 12839749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ monitoring of Cryptosporidium parvum oocyst surface adhesion using ATR-FTIR spectroscopy.
    Gao X; Chorover J
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):169-76. PubMed ID: 19269797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Glycosaminoglycans on
    Mayerberger EA; Yazdanparast Tafti S; Jedlicka SS; Jellison KL
    Appl Environ Microbiol; 2023 Mar; 89(3):e0173722. PubMed ID: 36790186
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.