These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15641846)

  • 21. Helix formation inside a nanotube: possible influence of backbone-water hydrogen bonding by the confining surface through modulation of water activity.
    Zhou HX
    J Chem Phys; 2007 Dec; 127(24):245101. PubMed ID: 18163710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water dynamics--the effects of ions and nanoconfinement.
    Park S; Moilanen DE; Fayer MD
    J Phys Chem B; 2008 May; 112(17):5279-90. PubMed ID: 18370431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations.
    Qi W; Chen J; Yang J; Lei X; Song B; Fang H
    J Phys Chem B; 2013 Jul; 117(26):7967-71. PubMed ID: 23751101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical crossover and breakdown of the Stokes-Einstein relation in confined water and in methanol-diluted bulk water.
    Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Stanley HE; Chen SH
    J Phys Chem B; 2010 Feb; 114(5):1870-8. PubMed ID: 20058894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientational dynamics of water confined on a nanometer length scale in reverse micelles.
    Tan HS; Piletic IR; Fayer MD
    J Chem Phys; 2005 May; 122(17):174501. PubMed ID: 15910039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis.
    Qi W; Zhao H
    J Chem Phys; 2015 Sep; 143(11):114708. PubMed ID: 26395729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube.
    Zhou X; Wang C; Wu F; Feng M; Li J; Lu H; Zhou R
    J Chem Phys; 2013 May; 138(20):204710. PubMed ID: 23742503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of self-assembled glycolipid nanotubes with bilayer sheets.
    Yoshida K; Minamikawa H; Kamiya S; Shimizu T; Isoda S
    J Nanosci Nanotechnol; 2007 Mar; 7(3):960-4. PubMed ID: 17450859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confinement effect of organic nanotubes toward green fluorescent protein (GFP) depending on the inner diameter size.
    Kameta N; Minamikawa H; Someya Y; Yui H; Masuda M; Shimizu T
    Chemistry; 2010 Apr; 16(14):4217-23. PubMed ID: 20235251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What can you learn from a molecular probe? New insights on the behavior of C343 in homogeneous solutions and AOT reverse micelles.
    Correa NM; Levinger NE
    J Phys Chem B; 2006 Jul; 110(26):13050-61. PubMed ID: 16805613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. When is water not water? Exploring water confined in large reverse micelles using a highly charged inorganic molecular probe.
    Baruah B; Roden JM; Sedgwick M; Correa NM; Crans DC; Levinger NE
    J Am Chem Soc; 2006 Oct; 128(39):12758-65. PubMed ID: 17002370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence probing of the temperature-induced phase transition in a glycolipid self-assembly: hexagonal ↔ micellar and cubic ↔ lamellar.
    Zahid NI; Abou-Zied OK; Hashim R; Heidelberg T
    Langmuir; 2012 Mar; 28(11):4989-95. PubMed ID: 22364590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excited-state proton transfer of 2-(2'-pyridyl)benzimidazole in microemulsions: selective enhancement and slow dynamics in aerosol OT reverse micelles with an aqueous core.
    Mukherjee TK; Panda D; Datta A
    J Phys Chem B; 2005 Oct; 109(40):18895-901. PubMed ID: 16853432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photophysics of ANS. IV. Electron transfer quenching of ANS in alcoholic solvents and mixtures.
    Kirk W; Wessels W
    Biophys Chem; 2007 Jan; 125(1):32-49. PubMed ID: 16989939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamics of water entry in hydrophobic channels of carbon nanotubes.
    Kumar H; Mukherjee B; Lin ST; Dasgupta C; Sood AK; Maiti PK
    J Chem Phys; 2011 Mar; 134(12):124105. PubMed ID: 21456643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy.
    Liu X; Pan X; Zhang S; Han X; Bao X
    Langmuir; 2014 Jul; 30(27):8036-45. PubMed ID: 24951088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes.
    Ratanatawanate C; Yu J; Zhou C; Zheng J; Balkus KJ
    Nanotechnology; 2011 Feb; 22(6):065601. PubMed ID: 21212487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid mixing in growing microscale vesicles conjugated by surfactant nanotubes.
    Davidson M; Dommersnes P; Markström M; Joanny JF; Karlsson M; Orwar O
    J Am Chem Soc; 2005 Feb; 127(4):1251-7. PubMed ID: 15669864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles.
    Piletic IR; Tan HS; Fayer MD
    J Phys Chem B; 2005 Nov; 109(45):21273-84. PubMed ID: 16853758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly and subsequent accumulation of lipid nanotubes at oil/water interfaces.
    Yui H; Sawada D; Kamiya S; Sawada T; Shimizu T
    Anal Sci; 2004 Nov; 20(11):1549-52. PubMed ID: 15566148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.