These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 15642726)
1. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ho LC; White PJ Ann Bot; 2005 Mar; 95(4):571-81. PubMed ID: 15642726 [TBL] [Abstract][Full Text] [Related]
2. Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Tonetto de Freitas S; Padda M; Wu Q; Park S; Mitcham EJ Plant Physiol; 2011 Jun; 156(2):844-55. PubMed ID: 21464475 [TBL] [Abstract][Full Text] [Related]
3. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments. Tonetto de Freitas S; McElrone AJ; Shackel KA; Mitcham EJ J Exp Bot; 2014 Jan; 65(1):235-47. PubMed ID: 24220654 [TBL] [Abstract][Full Text] [Related]
4. Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. de Freitas ST; Handa AK; Wu Q; Park S; Mitcham EJ Plant J; 2012 Sep; 71(5):824-35. PubMed ID: 22563738 [TBL] [Abstract][Full Text] [Related]
5. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. de Freitas ST; Shackel KA; Mitcham EJ J Exp Bot; 2011 May; 62(8):2645-56. PubMed ID: 21282326 [TBL] [Abstract][Full Text] [Related]
6. Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits. Mestre TC; Garcia-Sanchez F; Rubio F; Martinez V; Rivero RM J Plant Physiol; 2012 Nov; 169(17):1719-27. PubMed ID: 22940289 [TBL] [Abstract][Full Text] [Related]
7. Blossom-end rot: a century-old problem in tomato (Solanum lycopersicum L.) and other vegetables. Topcu Y; Nambeesan SU; van der Knaap E Mol Hortic; 2022 Jan; 2(1):1. PubMed ID: 37789437 [TBL] [Abstract][Full Text] [Related]
8. Effects of Ca Sprays on Fruit Ca Content and Yield of Tomato Variety Susceptible to Blossom-End Rot. Karlsons A; Osvalde A; Cekstere G; Āboliņa L Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111863 [TBL] [Abstract][Full Text] [Related]
9. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Suzuki K; Shono M; Egawa Y Protoplasma; 2003; 222(3-4):149-56. PubMed ID: 14714203 [TBL] [Abstract][Full Text] [Related]
10. Identification of blossom-end rot loci using joint QTL-seq and linkage-based QTL mapping in tomato. Topcu Y; Sapkota M; Illa-Berenguer E; Nambeesan SU; van der Knaap E Theor Appl Genet; 2021 Sep; 134(9):2931-2945. PubMed ID: 34128088 [TBL] [Abstract][Full Text] [Related]
11. Comparative effect of partial root-zone drying and deficit irrigation on incidence of blossom-end rot in tomato under varied calcium rates. Sun Y; Feng H; Liu F J Exp Bot; 2013 Apr; 64(7):2107-16. PubMed ID: 23530128 [TBL] [Abstract][Full Text] [Related]
12. Proteomic approach to blossom-end rot in tomato fruits (Lycopersicon esculentum M.): antioxidant enzymes and the pentose phosphate pathway. Casado-Vela J; Sellés S; Bru Martínez R Proteomics; 2005 Jul; 5(10):2488-96. PubMed ID: 15892162 [TBL] [Abstract][Full Text] [Related]
13. Limitation of mineral supply as tool for the induction of secondary metabolites accumulation in tomato leaves. Groher T; Schmittgen S; Noga G; Hunsche M Plant Physiol Biochem; 2018 Sep; 130():105-111. PubMed ID: 29980095 [TBL] [Abstract][Full Text] [Related]
14. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. Fanasca S; Colla G; Maiani G; Venneria E; Rouphael Y; Azzini E; Saccardo F J Agric Food Chem; 2006 Jun; 54(12):4319-25. PubMed ID: 16756362 [TBL] [Abstract][Full Text] [Related]
15. Validation and demonstration of a pericarp disc system for studying blossom-end rot of tomatoes. Reitz NF; Mitcham EJ Plant Methods; 2021 Mar; 17(1):28. PubMed ID: 33691714 [TBL] [Abstract][Full Text] [Related]
16. Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically. Costan A; Stamatakis A; Chrysargyris A; Petropoulos SA; Tzortzakis N J Sci Food Agric; 2020 Jan; 100(2):732-743. PubMed ID: 31597201 [TBL] [Abstract][Full Text] [Related]
17. Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in sCAX1-expressing tobacco and tomato. Wu Q; Shigaki T; Han JS; Kim CK; Hirschi KD; Park S Plant Mol Biol; 2012 Dec; 80(6):609-19. PubMed ID: 23007728 [TBL] [Abstract][Full Text] [Related]
18. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. Wang S; Lu G; Hou Z; Luo Z; Wang T; Li H; Zhang J; Ye Z J Exp Bot; 2014 Jul; 65(12):3005-14. PubMed ID: 24723399 [TBL] [Abstract][Full Text] [Related]
20. Bio-controlling Effect of Leaf Extract of Tagetes patula L. (Marigold) on Growth Parameters and Diseases of Tomato. Nahak G; Kanta Sahu R Pak J Biol Sci; 2017; 20(1):12-19. PubMed ID: 29023010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]