BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15642814)

  • 21. Vitreous body glutamate concentration in dogs with glaucoma.
    Brooks DE; Garcia GA; Dreyer EB; Zurakowski D; Franco-Bourland RE
    Am J Vet Res; 1997 Aug; 58(8):864-7. PubMed ID: 9256971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional optic nerve damage in experimental mouse glaucoma.
    Mabuchi F; Aihara M; Mackey MR; Lindsey JD; Weinreb RN
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4352-8. PubMed ID: 15557443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures.
    Hare WA; WoldeMussie E; Lai RK; Ton H; Ruiz G; Chun T; Wheeler L
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2625-39. PubMed ID: 15277486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping.
    Gaasterland D; Tanishima T; Kuwabara T
    Invest Ophthalmol Vis Sci; 1978 Sep; 17(9):838-46. PubMed ID: 81192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant.
    Thanos S; Naskar R
    Exp Eye Res; 2004 Jul; 79(1):119-29. PubMed ID: 15183107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histomorphometric analysis of optic nerve changes in experimental glaucoma.
    Yücel YH; Kalichman MW; Mizisin AP; Powell HC; Weinreb RN
    J Glaucoma; 1999 Feb; 8(1):38-45. PubMed ID: 10084273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of a method for establishing a model with more stable chronic glaucoma in rhesus monkeys.
    Yan Z; Tian Z; Chen H; Deng S; Lin J; Liao H; Yang X; Ge J; Zhuo Y
    Exp Eye Res; 2015 Feb; 131():56-62. PubMed ID: 25536534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma.
    Jiang C; Moore MJ; Zhang X; Klassen H; Langer R; Young M
    Mol Vis; 2007 Sep; 13():1783-92. PubMed ID: 17960131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma.
    Hains BC; Waxman SG
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4164-9. PubMed ID: 16249495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immune priming and experimental glaucoma: the effect of prior systemic lipopolysaccharide challenge on tissue outcomes after optic nerve injury.
    Narayan DS; Casson RJ; Ebneter A; Chidlow G; Grace PM; Hutchinson MR; Wood JP
    Clin Exp Ophthalmol; 2014 Aug; 42(6):539-54. PubMed ID: 24373007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation of pseudoexfoliative material and optic nerve damage in pseudoexfoliation syndrome.
    Gottanka J; Flügel-Koch C; Martus P; Johnson DH; Lütjen-Drecoll E
    Invest Ophthalmol Vis Sci; 1997 Nov; 38(12):2435-46. PubMed ID: 9375560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of ganglion cell loss and cone loss in experimental glaucoma.
    Wygnanski T; Desatnik H; Quigley HA; Glovinsky Y
    Am J Ophthalmol; 1995 Aug; 120(2):184-9. PubMed ID: 7639302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in reversal of cupping in experimental glaucoma. Longitudinal study.
    Shirakashi M; Nanba K; Iwata K
    Ophthalmology; 1992 Jul; 99(7):1104-10. PubMed ID: 1495790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increase in dephosphorylation of the heavy neurofilament subunit in the monkey chronic glaucoma model.
    Kashiwagi K; Ou B; Nakamura S; Tanaka Y; Suzuki M; Tsukahara S
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):154-9. PubMed ID: 12506068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser-induced primate glaucoma. II. Histopathology.
    Radius RL; Pederson JE
    Arch Ophthalmol; 1984 Nov; 102(11):1693-8. PubMed ID: 6541903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Optic disc measurements with computerized image analysis in experimental chronic glaucoma].
    Shirakashi M; Nanba K; Iwata K; Fukuchi T; Hara H
    Nippon Ganka Gakkai Zasshi; 1989 Aug; 93(8):852-8. PubMed ID: 2610166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surgical lowering of elevated intraocular pressure in monkeys prevents progression of glaucomatous disease.
    Nickells RW; Schlamp CL; Li Y; Kaufman PL; Heatley G; Peterson JC; Faha B; Ver Hoeve JN
    Exp Eye Res; 2007 Apr; 84(4):729-36. PubMed ID: 17291496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes.
    Downs JC; Suh JK; Thomas KA; Bellezza AJ; Hart RT; Burgoyne CF
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):540-6. PubMed ID: 15671280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinal proteomic changes following unilateral optic nerve transection and early experimental glaucoma in non-human primate eyes.
    Stowell C; Arbogast B; Cioffi G; Burgoyne C; Zhou A
    Exp Eye Res; 2011 Jul; 93(1):13-28. PubMed ID: 21530506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Configuration of the drainage angle, intraocular pressure, and optic disc cupping in subjects with chronic angle-closure glaucoma.
    Aung T; Lim MC; Chan YH; Rojanapongpun P; Chew PT;
    Ophthalmology; 2005 Jan; 112(1):28-32. PubMed ID: 15629816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.