These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. GdIII complexes with fast water exchange and high thermodynamic stability: potential building blocks for high-relaxivity MRI contrast agents. Laus S; Ruloff R; Tóth E; Merbach AE Chemistry; 2003 Aug; 9(15):3555-66. PubMed ID: 12898682 [TBL] [Abstract][Full Text] [Related]
4. Unexpected aggregation of neutral, xylene-cored dinuclear GdIII chelates in aqueous solution. Costa J; Balogh E; Turcry V; Tripier R; Le Baccon M; Chuburu F; Handel H; Helm L; Tóth E; Merbach AE Chemistry; 2006 Sep; 12(26):6841-51. PubMed ID: 16770815 [TBL] [Abstract][Full Text] [Related]
5. Aggregation studies of the water-soluble gadofullerene magnetic resonance imaging contrast agent: [Gd@C82O6(OH)16(NHCH2CH2COOH)8]x. Shu CY; Zhang EY; Xiang JF; Zhu CF; Wang CR; Pei XL; Han HB J Phys Chem B; 2006 Aug; 110(31):15597-601. PubMed ID: 16884284 [TBL] [Abstract][Full Text] [Related]
6. A benzene-core trinuclear GdIII complex: towards the optimization of relaxivity for MRI contrast agent applications at high magnetic field. Livramento JB; Helm L; Sour A; O'Neil C; Merbach AE; Tóth E Dalton Trans; 2008 Mar; (9):1195-202. PubMed ID: 18283380 [TBL] [Abstract][Full Text] [Related]
7. A starburst-shaped heterometallic compound incorporating six densely packed gd(3+) ions. Livramento JB; Sour A; Borel A; Merbach AE; Tóth E Chemistry; 2006 Jan; 12(4):989-1003. PubMed ID: 16311990 [TBL] [Abstract][Full Text] [Related]
8. Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies. Henig J; Tóth E; Engelmann J; Gottschalk S; Mayer HA Inorg Chem; 2010 Jul; 49(13):6124-38. PubMed ID: 20527901 [TBL] [Abstract][Full Text] [Related]
9. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. Bolskar RD; Benedetto AF; Husebo LO; Price RE; Jackson EF; Wallace S; Wilson LJ; Alford JM J Am Chem Soc; 2003 May; 125(18):5471-8. PubMed ID: 12720461 [TBL] [Abstract][Full Text] [Related]
10. Separation and characterization of the two diastereomers for [Gd(DTPA-bz-NH2)(H2O)]2-, a common synthon in macromolecular MRI contrast agents: their water exchange and isomerization kinetics. Burai L; Tóth E; Sour A; Merbach AE Inorg Chem; 2005 May; 44(10):3561-8. PubMed ID: 15877439 [TBL] [Abstract][Full Text] [Related]
11. 1H and 17O NMR relaxometric study in aqueous solution of Gd(III) complexes of EGTA-like derivatives bearing methylenephosphonic groups. Tei L; Botta M; Lovazzano C; Barge A; Milone L; Aime S Magn Reson Chem; 2008; 46 Suppl 1():S86-93. PubMed ID: 18855344 [TBL] [Abstract][Full Text] [Related]
12. Lanthanide(III) complexes that contain a self-immolative arm: potential enzyme responsive contrast agents for magnetic resonance imaging. Chauvin T; Torres S; Rosseto R; Kotek J; Badet B; Durand P; Tóth E Chemistry; 2012 Jan; 18(5):1408-18. PubMed ID: 22213022 [TBL] [Abstract][Full Text] [Related]
13. Calix[4]arenes as molecular platforms for magnetic resonance imaging (MRI) contrast agents. Schühle DT; Schatz J; Laurent S; Vander Elst L; Muller RN; Stuart MC; Peters JA Chemistry; 2009; 15(13):3290-6. PubMed ID: 19206118 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis and relaxation properties of novel bispolyazamacrocyclic Gd3+ complexes: an attempt towards calcium-sensitive MRI contrast agents. Mishra A; Fousková P; Angelovski G; Balogh E; Mishra AK; Logothetis NK; Tóth E Inorg Chem; 2008 Feb; 47(4):1370-81. PubMed ID: 18166011 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of the novel monoamide derivatives of Gd-TTDA. Wang YM; Li CR; Huang YC; Ou MH; Liu GC Inorg Chem; 2005 Jan; 44(2):382-92. PubMed ID: 15651885 [TBL] [Abstract][Full Text] [Related]
16. Outer-sphere investigation of MRI relaxation contrast agents. Example of a cyclodecapeptide gadolinium complex with second-sphere water. Bonnet CS; Fries PH; Crouzy S; Delangle P J Phys Chem B; 2010 Jul; 114(26):8770-81. PubMed ID: 20552972 [TBL] [Abstract][Full Text] [Related]
17. Gadolinium(III) complexes of 1,4,7-triazacyclononane based picolinate ligands: simultaneous optimization of water exchange kinetics and electronic relaxation. Nonat A; Giraud M; Gateau C; Fries PH; Helm L; Mazzanti M Dalton Trans; 2009 Oct; (38):8033-46. PubMed ID: 19771367 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles. Xu ZP; Kurniawan ND; Bartlett PF; Lu GQ Chemistry; 2007; 13(10):2824-30. PubMed ID: 17186555 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and evaluation of a high relaxivity manganese(II)-based MRI contrast agent. Troughton JS; Greenfield MT; Greenwood JM; Dumas S; Wiethoff AJ; Wang J; Spiller M; McMurry TJ; Caravan P Inorg Chem; 2004 Oct; 43(20):6313-23. PubMed ID: 15446878 [TBL] [Abstract][Full Text] [Related]
20. Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH(2))](10). Laus S; Sitharaman B; Tóth E; Bolskar RD; Helm L; Asokan S; Wong MS; Wilson LJ; Merbach AE J Am Chem Soc; 2005 Jul; 127(26):9368-9. PubMed ID: 15984854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]