These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 15644082)

  • 41. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis.
    Bluestein D; Einav S; Hwang NH
    J Biomech; 1994 Nov; 27(11):1369-78. PubMed ID: 7798287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Closing behavior of a new bileaflet mechanical heart valve.
    Bluestein D; Menon S; Wu ZJ; Haubold A; Armitage TL; Hwang NH
    ASAIO J; 1993; 39(3):M398-402. PubMed ID: 8268566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wavelet transforms in the analysis of mechanical heart valve cavitation.
    Herbertson LH; Reddy V; Manning KB; Welz JP; Fontaine AA; Deutsch S
    J Biomech Eng; 2006 Apr; 128(2):217-22. PubMed ID: 16524333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical study of squeeze-flow in tilting disc mechanical heart valves.
    Makhijani VB; Siegel JM; Hwang NH
    J Heart Valve Dis; 1996 Jan; 5(1):97-103. PubMed ID: 8834732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cavitation dynamics of medtronic hall mechanical heart valve prosthesis: fluid squeezing effect.
    Lee CS; Chandran KB; Chen LD
    J Biomech Eng; 1996 Feb; 118(1):97-105. PubMed ID: 8833080
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A protocol for the evaluation of the cavitation potential of mechanical heart valves.
    Herman BA; Carey RF
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S128-30; discussion S130-2. PubMed ID: 8061866
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In-vivo prediction of cavitation near a Medtronic Hall valve.
    Johansen P; Andersen TS; Hasenkam JM; Nygaard H
    J Heart Valve Dis; 2004 Jul; 13(4):651-8. PubMed ID: 15311874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel study of mechanical heart valve cavitation in a pressurized pulsatile duplicator.
    Wu C; Retta SM; Robinson RA; Herman BA; Grossman LW
    ASAIO J; 2009; 55(5):445-51. PubMed ID: 19701083
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
    Rambod E; Beizai M; Sahn DJ; Gharib M
    Ann Biomed Eng; 2007 Jul; 35(7):1131-45. PubMed ID: 17404890
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement of the closing behavior of the björk-shiley monoleaflet mechanical heart valve with an electrohydraulic total artificial heart.
    Lee H; Tsukiya T; Homma A; Taenaka Y; Tatsumi E; Takano H
    Artif Organs; 2003 Aug; 27(8):744-8. PubMed ID: 12911350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Observation of cavitation pits on a mechanical heart valve surface in an artificial heart used in in vivo testing.
    Lee H; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2009; 12(2):105-10. PubMed ID: 19536627
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A method for real-time in vitro observation of cavitation on prosthetic heart valves.
    Zapanta CM; Liszka EG; Lamson TC; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Biomech Eng; 1994 Nov; 116(4):460-8. PubMed ID: 7869722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cavitation threshold ranking and erosion characteristics of bileaflet heart valve prostheses.
    Richard G; Beavan A; Strzepa P
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S94-101. PubMed ID: 8061875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cavitation damage of pyrolytic carbon in mechanical heart valves.
    Kafesjian R; Howanec M; Ward GD; Diep L; Wagstaff LS; Rhee R
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S2-7. PubMed ID: 8061867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves.
    Carey RF; Porter JM; Richard G; Luck C; Shu MC; Guo GX; Elizondo DR; Kingsbury C; Anderson S; Herman BA
    J Heart Valve Dis; 1995 Sep; 4(5):532-9; discussion 539-41. PubMed ID: 8581198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical heart valve cavitation: valve specific parameters.
    Eichler MJ; Reul HM
    Int J Artif Organs; 2004 Oct; 27(10):855-67. PubMed ID: 15560680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cavitation of mechanical heart valves under physiologic conditions.
    Graf T; Reul H; Dietz W; Wilmes R; Rau G
    J Heart Valve Dis; 1992 Sep; 1(1):131-41. PubMed ID: 1341216
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-vitro measurements of the regurgitation of mechanical mitral heart valve prostheses in case of atrial fibrillation.
    Mouret F; Garitey V; Fuseri J; Rieu R
    J Heart Valve Dis; 2001 Mar; 10(2):264-8. PubMed ID: 11297214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.