BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 15644313)

  • 1. An arginine residue in the pore region is a key determinant of chloride dependence in cardiac pacemaker channels.
    Wahl-Schott C; Baumann L; Zong X; Biel M
    J Biol Chem; 2005 Apr; 280(14):13694-700. PubMed ID: 15644313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine kinase inhibition differentially regulates heterologously expressed HCN channels.
    Yu HG; Lu Z; Pan Z; Cohen IS
    Pflugers Arch; 2004 Jan; 447(4):392-400. PubMed ID: 14634823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide.
    Chen S; Wang J; Siegelbaum SA
    J Gen Physiol; 2001 May; 117(5):491-504. PubMed ID: 11331358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dominant-negative suppression of HCN1- and HCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure-function relationships and multimerization.
    Xue T; Marbán E; Li RA
    Circ Res; 2002 Jun; 90(12):1267-73. PubMed ID: 12089064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage sensor movement and cAMP binding allosterically regulate an inherently voltage-independent closed-open transition in HCN channels.
    Chen S; Wang J; Zhou L; George MS; Siegelbaum SA
    J Gen Physiol; 2007 Feb; 129(2):175-88. PubMed ID: 17261842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias.
    Michels G; Er F; Khan I; Südkamp M; Herzig S; Hoppe UC
    Circulation; 2005 Feb; 111(4):399-404. PubMed ID: 15687126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhancement of HCN channel instantaneous current facilitated by slow deactivation is regulated by intracellular chloride concentration.
    Mistrík P; Pfeifer A; Biel M
    Pflugers Arch; 2006 Sep; 452(6):718-27. PubMed ID: 16715293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node.
    Altomare C; Terragni B; Brioschi C; Milanesi R; Pagliuca C; Viscomi C; Moroni A; Baruscotti M; DiFrancesco D
    J Physiol; 2003 Jun; 549(Pt 2):347-59. PubMed ID: 12702747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperpolarization-activated, cyclic AMP-gated, HCN1-like cation channel: the primary, full-length HCN isoform expressed in a saccular hair-cell layer.
    Cho WJ; Drescher MJ; Hatfield JS; Bessert DA; Skoff RP; Drescher DG
    Neuroscience; 2003; 118(2):525-34. PubMed ID: 12699787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model.
    Zicha S; Fernández-Velasco M; Lonardo G; L'Heureux N; Nattel S
    Cardiovasc Res; 2005 Jun; 66(3):472-81. PubMed ID: 15914112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode shifts in the voltage gating of the mouse and human HCN2 and HCN4 channels.
    Elinder F; Männikkö R; Pandey S; Larsson HP
    J Physiol; 2006 Sep; 575(Pt 2):417-31. PubMed ID: 16777944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperpolarization-activated cyclic nucleotide-gated channel 1 is a molecular determinant of the cardiac pacemaker current I(f).
    Moroni A; Gorza L; Beltrame M; Gravante B; Vaccari T; Bianchi ME; Altomare C; Longhi R; Heurteaux C; Vitadello M; Malgaroli A; DiFrancesco D
    J Biol Chem; 2001 Aug; 276(31):29233-41. PubMed ID: 11328811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions.
    Wang J; Chen S; Siegelbaum SA
    J Gen Physiol; 2001 Sep; 118(3):237-50. PubMed ID: 11524455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers.
    Azene EM; Xue T; Marbán E; Tomaselli GF; Li RA
    Cardiovasc Res; 2005 Aug; 67(2):263-73. PubMed ID: 16005302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2.
    Ludwig A; Budde T; Stieber J; Moosmang S; Wahl C; Holthoff K; Langebartels A; Wotjak C; Munsch T; Zong X; Feil S; Feil R; Lancel M; Chien KR; Konnerth A; Pape HC; Biel M; Hofmann F
    EMBO J; 2003 Jan; 22(2):216-24. PubMed ID: 12514127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels.
    Azene EM; Xue T; Li RA
    J Physiol; 2003 Mar; 547(Pt 2):349-56. PubMed ID: 12562911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associated changes in HCN2 and HCN4 transcripts and I(f) pacemaker current in myocytes.
    Zhang Q; Huang A; Lin YC; Yu HG
    Biochim Biophys Acta; 2009 May; 1788(5):1138-47. PubMed ID: 19236845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2.
    Ramakrishnan NA; Drescher MJ; Khan KM; Hatfield JS; Drescher DG
    J Biol Chem; 2012 Nov; 287(45):37628-46. PubMed ID: 22948144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the pacemaker channel HCN1 with filamin A.
    Gravante B; Barbuti A; Milanesi R; Zappi I; Viscomi C; DiFrancesco D
    J Biol Chem; 2004 Oct; 279(42):43847-53. PubMed ID: 15292205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional heteromerization of HCN1 and HCN2 pacemaker channels.
    Ulens C; Tytgat J
    J Biol Chem; 2001 Mar; 276(9):6069-72. PubMed ID: 11133998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.