BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 15644462)

  • 1. Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors.
    Woo CW; Siow YL; Pierce GN; Choy PC; Minuk GY; Mymin D; O K
    Am J Physiol Endocrinol Metab; 2005 May; 288(5):E1002-10. PubMed ID: 15644462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homocysteine activates cAMP-response element binding protein in HepG2 through cAMP/PKA signaling pathway.
    Woo CW; Siow YL; O K
    Arterioscler Thromb Vasc Biol; 2006 May; 26(5):1043-50. PubMed ID: 16497994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homocysteine thiolactone-induced hyperhomocysteinemia does not alter concentrations of cholesterol and SREBP-2 target gene mRNAS in rats.
    Stangl GI; Weisse K; Dinger C; Hirche F; Brandsch C; Eder K
    Exp Biol Med (Maywood); 2007 Jan; 232(1):81-7. PubMed ID: 17202588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of hepatic cholesterol biosynthesis by berberine during hyperhomocysteinemia.
    Wu N; Sarna LK; Siow YL; O K
    Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R635-43. PubMed ID: 21178122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homocysteine stimulates monocyte chemoattractant protein-1 expression in the kidney via nuclear factor-kappaB activation.
    Hwang SY; Woo CW; Au-Yeung KK; Siow YL; Zhu TY; O K
    Am J Physiol Renal Physiol; 2008 Jan; 294(1):F236-44. PubMed ID: 17977907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic tissue sterol regulatory element binding protein 2 and low-density lipoprotein receptor in nephrotic syndrome.
    Kim CH; Kim HJ; Mitsuhashi M; Vaziri ND
    Metabolism; 2007 Oct; 56(10):1377-82. PubMed ID: 17884448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hyperhomocysteinemia on cardiovascular risk factors and initiation of atherosclerosis in Wistar rats.
    Sharma M; Rai SK; Tiwari M; Chandra R
    Eur J Pharmacol; 2007 Nov; 574(1):49-60. PubMed ID: 17706635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nitric oxide modulators on cardiovascular risk factors in mild hyperhomocysteinaemic rat model.
    Sharma M; Rai SK; Tiwari RK; Tiwari M; Chandra R
    Basic Clin Pharmacol Toxicol; 2008 Jul; 103(1):25-30. PubMed ID: 18598296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase during high fat diet feeding.
    Wu N; Sarna LK; Hwang SY; Zhu Q; Wang P; Siow YL; O K
    Biochim Biophys Acta; 2013 Oct; 1832(10):1560-8. PubMed ID: 23651731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homocysteine modulates the effect of simvastatin on expression of ApoA-I and NF-kappaB/iNOS.
    Mikael LG; Rozen R
    Cardiovasc Res; 2008 Oct; 80(1):151-8. PubMed ID: 18540024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folic acid reduces adhesion molecules VCAM-1 expession in aortic of rats with hyperhomocysteinemia.
    Li M; Chen J; Li YS; Feng YB; Gu X; Shi CZ
    Int J Cardiol; 2006 Jan; 106(2):285-8. PubMed ID: 16183151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary cholesterol regulates hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in rats primarily at the level of translation.
    Chambers CM; Ness GC
    Arch Biochem Biophys; 1998 Jun; 354(2):317-22. PubMed ID: 9637742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of hepatic lanosterol 14 alpha-demethylase gene expression by dietary cholesterol and cholesterol-lowering agents.
    Ness GC; Gertz KR; Holland RC
    Arch Biochem Biophys; 2001 Nov; 395(2):233-8. PubMed ID: 11697861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folic acid supplementation inhibits NADPH oxidase-mediated superoxide anion production in the kidney.
    Hwang SY; Siow YL; Au-Yeung KK; House J; O K
    Am J Physiol Renal Physiol; 2011 Jan; 300(1):F189-98. PubMed ID: 20980407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified HMG-CoA reductase and LDLr regulation is deeply involved in age-related hypercholesterolemia.
    Pallottini V; Martini C; Cavallini G; Donati A; Bergamini E; Notarnicola M; Caruso MG; Trentalance A
    J Cell Biochem; 2006 Aug; 98(5):1044-53. PubMed ID: 16741953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of early cholesterol biosynthesis in rat liver: effects of sterols, bile acids, lovastatin, and BM 15.766 on 3-hydroxy-3-methylglutaryl coenzyme A synthase and acetoacetyl coenzyme A thiolase activities.
    Honda A; Salen G; Nguyen LB; Xu G; Tint GS; Batta AK; Shefer S
    Hepatology; 1998 Jan; 27(1):154-9. PubMed ID: 9425931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High glucose concentration increases macrophage cholesterol biosynthesis in diabetes through activation of the sterol regulatory element binding protein 1 (SREBP1): inhibitory effect of insulin.
    Kaplan M; Kerry R; Aviram M; Hayek T
    J Cardiovasc Pharmacol; 2008 Oct; 52(4):324-32. PubMed ID: 18791464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gender-related difference in altered gene expression of a sterol regulatory element binding protein, SREBP-2, by lead nitrate in rats: correlation with development of hypercholesterolemia.
    Kojima M; Degawa M
    J Appl Toxicol; 2006; 26(4):381-4. PubMed ID: 16705668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of hypercholesterolemia-induced alterations in apolipoprotein B and HMG-CoA reductase expression by selenium supplementation.
    Dhingra S; Bansal MP
    Chem Biol Interact; 2006 May; 161(1):49-56. PubMed ID: 16581047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying the impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in aged rat liver.
    Pallottini V; Montanari L; Cavallini G; Bergamini E; Gori Z; Trentalance A
    Mech Ageing Dev; 2004 Sep; 125(9):633-9. PubMed ID: 15491682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.